Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 19(6): 760-771, 2019.
Article in English | MEDLINE | ID: mdl-30451119

ABSTRACT

BACKGROUND: Some reports have demonstrated the role of the G Protein-coupled Estrogen Receptor (GPER) in growth and proliferation of breast cancer cells. OBJECTIVE: In an effort to develop new therapeutic strategies against breast cancer, we employed an in silico study to explore the binding modes of tetrahydroquinoline 2 and 4 to be compared with the reported ligands G1 and G1PABA. METHODS: This study aimed to design and filter ligands by in silico studies determining their Lipinski's rule, toxicity and binding properties with GPER to achieve experimental assays as anti-proliferative compounds of breast cancer cell lines. RESULTS: In silico studies suggest as promissory two tetrahydroquinoline 2 and 4 which contain a carboxyl group instead of the acetyl group (as is needed for G1 synthesis), which add low (2) and high hindrance (4) chemical moieties to explore the polar, hydrophobic and hindrance effects. Docking and molecular dynamics simulations of the target compounds were performed with GPER to explore their binding mode and free energy values. In addition, the target small molecules were synthesized and assayed in vitro using breast cancer cells (MCF-7 and MDA-MB-231). Experimental assays showed that compound 2 decreased cell proliferation, showing IC50 values of 50µM and 25µM after 72h of treatment of MCF-7 and MDA-MB-231 cell lines, respectively. Importantly, compound 2 showed a similar inhibitory effect on proliferation as G1 compound in MDA-MB-231 cells, suggesting that both ligands reach the GPER-binding site in a similar way, as was demonstrated through in silico studies. CONCLUSION: A concentration-dependent inhibition of cell proliferation occurred with compound 2 in the two cell lines regardless of GPER.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Quinolines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Models, Molecular , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship , Thermodynamics , Tumor Cells, Cultured
2.
Biopolymers ; 105(7): 393-413, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27016043

ABSTRACT

B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016.


Subject(s)
Aniline Compounds/chemistry , Biphenyl Compounds/chemistry , Gossypol/chemistry , Nitrophenols/chemistry , Paclitaxel/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , Sulfonamides/chemistry , Binding Sites , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphorylation , Piperazines/chemistry , Principal Component Analysis , Protein Binding , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Proto-Oncogene Proteins c-bcl-2/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...