Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
2.
J Phys Condens Matter ; 33(17)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33524963

ABSTRACT

Interpenetrated polymer network microgels, composed of crosslinked networks of poly(N-isopropylacrylamide) and polyacrylic acid (PAAc), have been investigated through rheological measurements at four different amounts of PAAc. Both PAAc content and crosslinking degree modify particle dimensions, mass and softness, thereby strongly affecting the volume fraction and the system viscosity. Here the volume fraction is derived from the flow curves at low concentrations by fitting the zero-shear viscosity with the Einstein-Batchelor equation which provides a parameterkto shift weight concentration to volume fraction. We find that particles with higher PAAc content and crosslinker are characterized by a greater value ofkand therefore by larger volume fractions when compared to softer particles. The packing fractions obtained from rheological measurements are compared with those from static light scattering for two PAAc contents revealing a good agreement. Moreover, the behaviour of the viscosity as a function of packing fraction, at room temperature, has highlighted an Arrhenius dependence for microgels synthesized with low PAAc content and a Vogel-Fulcher-Tammann dependence for the highest investigated PAAc concentration. A comparison with the hard spheres behaviour indicates a steepest increase of the viscosity with decreasing particles softness. Finally, the volume fraction dependence of the viscosity at a fixed PAAc and at two different temperatures, below and above the volume phase transition, shows a quantitative agreement with the structural relaxation time measured through dynamic light scattering indicating that interpenetrated polymer network microgels softness can be tuned with PAAc and temperature and that, depending on particle softness, two different routes are followed.

3.
J Chem Phys ; 152(20): 204904, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32486676

ABSTRACT

Combining elastic incoherent neutron scattering and differential scanning calorimetry, we investigate the occurrence of the volume phase transition (VPT) in very concentrated poly-(N-isopropyl-acrylamide) (PNIPAM) microgel suspensions, from a polymer weight fraction of 30 wt. % up to dry conditions. Although samples are arrested at the macroscopic scale, atomic degrees of freedom are equilibrated and can be probed in a reproducible way. A clear signature of the VPT is present as a sharp drop in the mean square displacement of PNIPAM hydrogen atoms obtained by neutron scattering. As a function of concentration, the VPT gets smoother as dry conditions are approached, whereas the VPT temperature shows a minimum at about 43 wt. %. This behavior is qualitatively confirmed by calorimetry measurements. Molecular dynamics simulations are employed to complement experimental results and gain further insights into the nature of the VPT, confirming that it involves the formation of an attractive gel state between the microgels. Overall, these results provide evidence that the VPT in PNIPAM-based systems can be detected at different time- and length-scales as well as under overcrowded conditions.

4.
J Chem Phys ; 151(10): 104501, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31521083

ABSTRACT

In this article, we examine the collective particle dynamics, as expressed by the time correlation function of the longitudinal particle current density, of several different fluids in the vicinity of their freezing points/lines. We consider and compare results obtained by dynamic light scattering for a suspension of hard spheres and by molecular dynamics for fluids with hard sphere and Lennard-Jones interactions. The latter are performed along both an isotherm and an isochore. In all cases, we find a qualitative change in the collective dynamics, within the resolution of the data, when their respective freezing lines are crossed. We associate this change with the onset of caging. The new results for the Lennard-Jones fluid reported here confirm that the occurrence of caging, found previously for systems of hard spheres, is a more general feature that distinguishes a metastable fluid from one in thermodynamic equilibrium.

5.
Sci Rep ; 8(1): 14426, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258102

ABSTRACT

Thermoresponsive microgels are polymeric colloidal networks that can change their size in response to a temperature variation. This peculiar feature is driven by the nature of the solvent-polymer interactions, which triggers the so-called volume phase transition from a swollen to a collapsed state above a characteristic temperature. Recently, an advanced modelling protocol to assemble realistic, disordered microgels has been shown to reproduce experimental swelling behavior and form factors. In the original framework, the solvent was taken into account in an implicit way, condensing solvent-polymer interactions in an effective attraction between monomers. To go one step further, in this work we perform simulations of realistic microgels in an explicit solvent. We identify a suitable model which fully captures the main features of the implicit model and further provides information on the solvent uptake by the interior of the microgel network and on its role in the collapse kinetics. These results pave the way for addressing problems where solvent effects are dominant, such as the case of microgels at liquid-liquid interfaces.

6.
Phys Chem Chem Phys ; 20(15): 9997-10010, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29619464

ABSTRACT

By means of atomistic molecular dynamics simulations we investigate the behaviour of poly(N-isopropylacrylamide), PNIPAM, in water at temperatures below and above the lower critical solution temperature (LCST), including the undercooled regime. The transition between water soluble and insoluble states at the LCST is described as a cooperative process involving an intramolecular coil-to-globule transition preceding the aggregation of chains and the polymer precipitation. In this work we investigate the molecular origin of such cooperativity and the evolution of the hydration pattern in the undercooled polymer solution. The solution behaviour of an atactic 30-mer at high dilution is studied in the temperature interval from 243 to 323 K with a favourable comparison to available experimental data. In the water soluble states of PNIPAM we detect a correlation between polymer segmental dynamics and diffusion motion of bound water, occurring with the same activation energy. Simulation results show that below the coil-to-globule transition temperature PNIPAM is surrounded by a network of hydrogen bonded water molecules and that the cooperativity arises from the structuring of water clusters in proximity to hydrophobic groups. Differently, the perturbation of the hydrogen bond pattern involving water and amide groups occurs above the transition temperature. Altogether these findings reveal that even above the LCST PNIPAM remains largely hydrated and that the coil-to-globule transition is related with a significant rearrangement of the solvent in the proximity of the surface of the polymer. The comparison between the hydrogen bonding of water in the surrounding of PNIPAM isopropyl groups and in the bulk displays a decreased structuring of solvent at the hydrophobic polymer-water interface across the transition temperature, as expected because of the topological extension along the chain of such interface. No evidence of an upper critical solution temperature behaviour, postulated in theoretical and thermodynamics studies of PNIPAM aqueous solution, is observed in the low temperature domain.

7.
Phys Rev Lett ; 120(7): 078003, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542977

ABSTRACT

Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concentrations. Combining in situ rheo-small-angle-neutron-scattering experiments and numerical simulations we show that shear facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results provide a new avenue to tailor colloidal crystallization and the crystal-to-crystal transition at the molecular level by coupling softness and shear.

8.
Soft Matter ; 12(19): 4300-8, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27001686

ABSTRACT

We study the ageing and ultimate gravitational collapse of colloidal gels in which the interparticle attraction is induced by non-adsorbing polymers via the depletion effect. The gels are formed through arrested spinodal decomposition, whereby the dense phase arrests into an attractive glass. We map the experimental state diagram onto a theoretical one obtained from computer simulations and theoretical calculations. Discrepancies between the experimental and simulated gel regions in the state diagram can be explained by the particle size and density dependence of the boundary below which the gel is not strong enough to resist gravitational stress. Visual observations show that gravitational collapse of the gels falls into two distinct regimes as the colloid and polymer concentrations are varied, with gels at low colloid concentrations showing the onset of rapid collapse after a delay time. Magnetic resonance imaging (MRI) was used to provide quantitative, spatio-temporally resolved measurements of the solid volume fraction in these rapidly collapsing gels. We find that during the delay time, a dense region builds up at the top of the sample. The rapid collapse is initiated when the gel structure is no longer able to support this dense layer.

9.
Phys Chem Chem Phys ; 17(46): 31177-87, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26542112

ABSTRACT

A complete understanding of the role of molecular anisotropy in directing the self assembly of colloids and proteins remains a challenge for soft matter science and biophysics. For proteins in particular, the complexity of the surface at a molecular level poses a challenge for any theoretical and numerical description. A soft matter approach, based on patchy models, has been useful in describing protein phase behaviour. In this work we examine how chemical modification of the protein surface, by addition of a fluorophore, affects the physical properties of protein solutions. By using a carefully controlled experimental protein model (human gamma-D crystallin) and numerical simulations, we demonstrate that protein solution behaviour defined by anisotropic surface effects can be captured by a custom patchy particle model. In particular, the chemical modification is found to be equivalent to the addition of a large hydrophobic surface patch with a large attractive potential energy well, which produces a significant increase in the temperature at which liquid-liquid phase separation occurs, even for very low fractions of fluorescently labelled proteins. These results are therefore directly relevant to all applications based on the use of fluorescent labelling by chemical modification, which have become increasingly important in the understanding of biological processes and biophysical interactions.


Subject(s)
Fluorescent Dyes/chemistry , gamma-Crystallins/chemistry , Circular Dichroism , Fluorescein-5-isothiocyanate/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Solutions/chemistry , Surface Properties , Transition Temperature
10.
Nat Commun ; 5: 5503, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25429604

ABSTRACT

The conventional view of freezing holds that nuclei of the crystal phase form in the metastable fluid through purely stochastic thermal density fluctuations. The possibility of a change in the character of the fluctuations as the freezing point is traversed is beyond the scope of this perspective. Here we show that this perspective may be incomplete by examination of the time autocorrelation function of the longitudinal current, computed by molecular dynamics for the hard-sphere fluid around its freezing point. In the spatial window where sound is overdamped, we identify a change in the long-time decay of the correlation function at the known freezing points of monodisperse and moderately polydisperse systems. The fact that these findings agree with previous experimental studies of colloidal systems in which particle are subject to diffusive dynamics, suggests that the dynamical signature we identify with the freezing transition is a consequence of packing effects alone.

11.
Phys Rev Lett ; 106(22): 228301, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21702636

ABSTRACT

Binary mixtures of ultrasoft colloids and linear polymer chains were investigated by small-angle neutron scattering and liquid state theory. We show that experimental data can be described by employing recently developed effective interactions between the colloid and the polymer chains, in which both components are modeled as point particles in a coarse-grained approach, in which the monomers have been traced out. Quantitative, parameter-free agreement between experiment and theory for the pair correlations, the phase behavior and the concentration dependence of the interaction length is achieved.

12.
J Phys Condens Matter ; 23(19): 194117, 2011 May 18.
Article in English | MEDLINE | ID: mdl-21525559

ABSTRACT

We report new results from our programme of molecular dynamics simulation of hard-sphere systems, focusing on crystallization and glass formation at high concentrations. First we consider a much larger system than hitherto, N = 86 400 equal-sized particles. The results are similar to those obtained with a smaller system, studied previously, showing conventional nucleation and growth of crystals at concentrations near melting and crossing over to a spinodal-like regime at higher concentrations where the free energy barrier to nucleation appears to be negligible. Second, we investigate the dependence on the initial state of the system. We have devised a Monte Carlo 'constrained aging' method to move the particles in such a way that crystallization is discouraged. After a period of such aging, the standard molecular dynamics programme is run. For a system of N = 3200, we find that constrained aging encourages caging of the particles and slows crystallization somewhat. Nevertheless, both aged and unaged systems crystallize at volume fraction φ = 0.61 whereas neither system shows full crystallization in the duration of the simulation at φ = 0.62, a concentration still significantly below that of random close packing.


Subject(s)
Crystallization , Glass/chemistry , Materials Testing , Molecular Dynamics Simulation , Monte Carlo Method , Computer Simulation , Hardness , Microspheres , Particle Size , Phase Transition , Thermodynamics , Time Factors
13.
Phys Rev Lett ; 104(8): 085701, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20366947

ABSTRACT

Using experiments, theory and simulations, we show that the arrested state observed in a colloidal clay at high concentrations is stabilized by screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to distinguish this disconnected state, which melts upon addition of water, from a low-concentration gel state, which does not melt. Theoretical modeling and simulations at high concentrations reproduce the measured small angle x-ray scattering static structure factors and confirm the long-range electrostatic nature of the arrested structure. These findings are attributed to the different time scales controlling the competing attractive and repulsive interactions.

14.
J Phys Chem B ; 114(11): 3769-75, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20196560

ABSTRACT

The analysis of realistic numerical simulations of a gel-forming irreversible aggregation process provides information on the role of cluster diffusion in controlling the late stages of the aggregation kinetics. Interestingly, the crossover from chemically controlled to diffusion-controlled aggregation takes place well beyond percolation, after most of the particles have aggregated in the spanning network and only small clusters remain in the sol. The simulation data are scrutinized to gain insight into the origin of this crossover. We show that a single additional time scale (related to the average diffusion time) is sufficient to provide an accurate description of the evolution of the extent of reaction at all times.


Subject(s)
Gels/chemistry , Diffusion , Kinetics , Models, Chemical
15.
Philos Trans A Math Phys Eng Sci ; 367(1909): 4993-5011, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-19933124

ABSTRACT

Motivated by old experiments on colloidal suspensions, we report molecular dynamics simulations of assemblies of hard spheres, addressing crystallization and glass formation. The simulations cover wide ranges of polydispersity s (standard deviation of the particle size distribution divided by its mean) and particle concentration. No crystallization is observed for s>0.07. For 0.02

16.
Phys Rev Lett ; 103(13): 135704, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19905525

ABSTRACT

We study by molecular dynamics the interplay between arrest and crystallization in hard spheres. For state points in the plane of volume fraction (0.54 varphi_{g}. This happens on time scales for which the system is aging, and a diffusive regime in the mean square displacement is not reached; by those criteria, the system is a glass. Hence, contrary to a widespread assumption in the colloid literature, the occurrence of spontaneous crystallization within a bulk amorphous state does not prove that this state was an ergodic fluid rather than a glass.

17.
J Chem Phys ; 131(14): 144903, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19831465

ABSTRACT

The microstructure and rheological properties of a model colloidal system was probed in the vicinity of the glass transition by small-angle and ultra small-angle x-ray scattering, dynamic light scattering (DLS) and bulk rheology. The volume fraction of the particles was deduced by modeling the structure factor and the absolute scattered intensity in a self-consistent way. The glass transition (phi(G)) was identified from the frequency dependence of the shear moduli in the linear regime. The experimentally observed behavior was then compared with the viscoelastic properties derived from mode-coupling theory (MCT) using the experimental structure factor as input to the theory. The ensemble-averaged intermediate scattering functions from DLS measurements were also compared with those calculated from the MCT and reasonable agreement was obtained.

18.
J Phys Chem B ; 113(5): 1233-6, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19140709

ABSTRACT

We report molecular dynamics simulations of a gel-forming mixture of ellipsoidal patchy particles with different functionality. We show that in this model, which disfavors the formation of bond-loops, elapsed time during irreversible aggregation--leading to the formation of an extended network--can be formally correlated with equilibrium temperature in reversible aggregation. We also show that it is possible to develop a parameter-free description of the self-assembly kinetics, bringing reversible and irreversible aggregation of loopless branched systems to the same level of understanding as equilibrium polymerization.


Subject(s)
Computer Simulation , Gels/chemistry , Temperature , Time Factors
19.
Nat Mater ; 7(10): 780-4, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18794859

ABSTRACT

The long-standing observations that different amorphous materials exhibit a pronounced enhancement of viscosity and eventually vitrify on compression or cooling continue to fascinate and challenge scientists, on the ground of their physical origin and practical implications. Glass formation is a generic phenomenon, observed in physically quite distinct systems that encompass hard and soft particles. It is believed that a common underlying scenario, namely cage formation, drives dynamical arrest, especially at high concentrations. Here, we identify a novel, asymmetric glassy state in soft colloidal mixtures, which is characterized by strongly anisotropically distorted cages, bearing similarities to those of hard-sphere glasses under shear. The anisotropy is induced by the presence of soft additives. This phenomenon seems to be generic to soft colloids and its origins lie in the penetrability of the constituent particles. The resulting phase diagram for mixtures of soft particles is clearly distinct from that of hard-sphere mixtures and brings forward a rich variety of vitrified states that delineate an ergodic lake in the parameter space spanned by the size ratio between the two components and by the concentration of the additives. Thus, a new route opens for the rational design of soft particles with desired tunable rheological properties.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 041503, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17994990

ABSTRACT

We report on an experimental study of single particle properties and interactions of poly(ethylene-alt-propylene)-poly(ethylene oxide) (PEP-PEO) starlike micelles. The starlike regime is achieved by an extremely asymmetric block ratio (1:20) and the number of arms (functionality) is changed by varying the composition of the solvent (the interfacial tension). Small angle neutron scattering (SANS) data in the dilute regime can be modeled by assuming a constant density profile in the micellar core (compact core) and a starlike density profile in the corona (starlike shell). The starlike morphology of the corona is confirmed by a direct comparison with SANS measurements of dilute poly butadiene star solutions. Comparison of structure factors obtained by SANS measurements in the concentrated regime shows in addition that the interactions in the two systems are equivalent. Micellar structure factors at several packing fractions can be modeled by using the ultrasoft potential recently proposed for star polymers [Likos, Phys. Rev. Lett. 80, 4450 (1998)]. The experimental phase diagram of PEP-PEO micelles is quantitatively compared to theoretical expectations, finding good agreement for the location of the liquid-solid boundary and excellent agreement for the critical packing fraction where the liquid-to-bcc crystal transition takes place for f<70. The functionality, i.e., the coronal density, strongly influences the nature of the solid phase: for f<70 the system crystallizes into a bcc phase, high f>70 formation of amorphous arrested states prevents crystallization.

SELECTION OF CITATIONS
SEARCH DETAIL
...