Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1200: 339601, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35256142

ABSTRACT

A new instrumental neutron activation analysis (INAA) for the simultaneous determination of titanium (TiO2) and silica (SiO2) dioxide as UV-filters in sunscreens is described. Samples are encapsulated, neutron irradiated (30 s) and after a suitable decay (3 min), the induced 51Ti (T1/2 = 5.76 min) and 29Al (T1/2 = 6.56 min) radionuclides are measured for the emitted γ-ray fingerprint. Three applications were carried out: (i) screening study (analysis of commercial sunscreens in combination with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS); (ii) research study (development of innovative UV-filters such as titanium dioxide or bismuth titanate loaded inorganic mesoporous silica nanoparticles, MSN); (iii) validation study (intercalibration of a spectrochemical method - inductively coupled plasma optical emission spectrometry, ICP-OES). Collectively, the nuclear method appears a powerful tool adequate for quantifying TiO2 and SiO2 in the above studies. The limited accessibility at the nuclear reactor for neutron activation is probably one of the reasons why the excellent characteristics of the nuclear technique are not always fully known and exploited in the industrial and research chemical world.


Subject(s)
Nanoparticles , Sunscreening Agents , Nanoparticles/analysis , Neutron Activation Analysis , Silicon Dioxide , Titanium/analysis
2.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494245

ABSTRACT

Background: TiO2 nanoparticles (TiO2 NPs) are the nanomaterial most produced as an ultraviolet (UV) filter. However, TiO2 is a semiconductor and, in nanoparticle size, is a strong photocatalyst, raising concerns about photomutagenesis. Mesoporous silica nanoparticles (MSN) were synthetized incorporating TiO2 NPs (TiO2@MSN) to develop a cosmetic UV filter. The aim of this study was to assess the toxicity of TiO2@MSN, compared with bare MSN and commercial TiO2 NPs, based on several biomarkers. Materials and Methods: Human peripheral blood mononuclear cells (PBMC) were exposed to TiO2@MSN, bare MSN (network) or commercial TiO2 NPs for comparison. Exposed PBMC were characterized for cell viability/apoptosis, reactive oxygen species (ROS), nuclear morphology, and cytokines secretion. Results: All the nanoparticles induced apoptosis, but only TiO2 NPs (alone or assembled into MSN) led to ROS and micronuclei. However, TiO2@MSN showed lower ROS and cytotoxicity with respect to the P25. Exposure to TiO2@MSN induced Th2-skewed and pro-fibrotic responses. Conclusions: Geno-cytotoxicity data indicate that TiO2@MSN are safer than P25 and MSN. Cytokine responses induced by TiO2@MSN are imputable to both the TiO2 NPs and MSN, and, therefore, considered of low immunotoxicological relevance. This analytical assessment might provide hints for NPs modification and deep purification to reduce the risk of health effects in the settings of their large-scale manufacturing and everyday usage by consumers.

3.
J Colloid Interface Sci ; 549: 1-8, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31015051

ABSTRACT

The development of new safe inorganic UV filters to effectively protect the skin from ultraviolet (UV) radiation effects is an emerging issue. Bismuth titanate-based UV filters embedded into mesoporous silica nanoparticles (MSN) represent a new class of inorganic sunscreens, with excellent UVA and UVB shielding properties. In addition, the presence of bismuth ions promotes a self-sealing process, allowing (i) the entrapment of the active phases in the deepest core of the system and (ii) the formation of an external glassy silica layer with a consequent suppression of the photocatalytic activity. In this work, aimed at studying in detail the self-sealing mechanism and accessing the role of bismuth ions in the formation of the system, a series of samples impregnated with a different amount of bismuth were investigated. The self-sealing process already occurs at the lowest content of bismuth and the mechanism is demonstrated to be triggered by the ability of Bi to work as a low-melting point agent for silica. Finally, a sunscreen formulation containing the new UV filter was prepared and the Sun Protection Factor (SPF), the pH and the viscosity were measured, demonstrating the potential of the proposed material for large-scale applications.

4.
Nanoscale ; 11(2): 675-687, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30565630

ABSTRACT

Core-shell systems have attracted increasing interest among the research community in recent years due to their unique properties and structural features, and the development of new synthetic strategies is still a challenge. In this work, we have investigated lanthanide-doped Bi2SiO5 nanocrystal formation inside mesoporous silica nanoparticles (MSNs). The role of both synthesis temperature and concentration of the bismuth precursor impregnated into the MSNs is discussed, showing an unprecedented strategy for the simultaneous stabilization of a crystalline core and a glassy shell. Temperature dependent synchrotron radiation X-ray powder diffraction (SR-XRPD) and high resolution transmission electron microscopy (HR-TEM) analyses allow one to follow the crystalline core growth. A mechanism for the formation of a Bi2SiO5@g-SiO2 core-shell nanosystem is proposed. In addition, the easy tunability of the color output of the upconverting system is demonstrated by means of suitable doping lanthanide ions with potential applications in several fields.

5.
ACS Appl Mater Interfaces ; 9(2): 1913-1921, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28001044

ABSTRACT

The application of nanosized inorganic UV filters in cosmetic field is limited by their high photocatalytic properties that could induce the degradation or dangerous transformation of the organic molecules in sunscreen formulations. To overcome this problem and simultaneously enlarge the window of filter's absorption, we propose the growth of bismuth titanates BixTiyOz into mesoporous silica nanoparticles (MSN). We investigated the chemical-physical properties by means of XRPD, TEM, UV-vis spectroscopy, N2 physisorption, XPS, and SF-ICP-MS analysis, while the influence on the environment was evaluated through photocatalytic tests. The growing process of this new nanosystem is discussed underlining the key role of the Bi3+ ion that, acting as a low-melting point agent for the silica framework, led to a self-sealing mechanism. The excellent UV shielding properties combined with a radical suppression of the photocatalytic activity make the proposed nanosystem a perfect candidate for the development of the next generation nanomaterials for sunscreen formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...