Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 380: 156-66, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24036391

ABSTRACT

(1)H and (13)C NMR chemical shift data are used by the computer program CASPER to predict chemical shifts of oligo- and polysaccharides. Three types of data are used, namely, those from monosaccharides, disaccharides, and trisaccharides. To improve the accuracy of these predictions we have assigned the (1)H and (13)C NMR chemical shifts of eleven monosaccharides, eleven disaccharides, twenty trisaccharides, and one tetrasaccharide; in total 43 compounds. Five of the oligosaccharides gave two distinct sets of NMR resonances due to the α- and ß-anomeric forms resulting in 48 (1)H and (13)C NMR chemical shift data sets. In addition, the pyranose ring forms of Neu5Ac were assigned at two temperatures, due to chemical shift displacements as a function of temperature. The (1)H NMR chemical shifts were refined using total line-shape analysis with the PERCH NMR software. (1)H and (13)C NMR chemical shift predictions were subsequently carried out by the CASPER program (http://www.casper.organ.su.se/casper/) for three branched oligosaccharides having different functional groups at their reducing ends, namely, a mannose-containing pentasaccharide, and two fucose-containing heptasaccharides having N-acetyllactosamine residues in the backbone of their structures. Good to excellent agreement was observed between predicted and experimental (1)H and (13)C NMR chemical shifts showing the utility of the method for structural determination or confirmation of synthesized oligosaccharides.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Monosaccharides/chemistry , Oligosaccharides/chemistry , Software
2.
PLoS One ; 8(1): e53941, 2013.
Article in English | MEDLINE | ID: mdl-23335981

ABSTRACT

The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are α-(1 → 2) and α-(1 → 3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and AA) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively α-(1 → 2)-linkages. By (13)C NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y. enterocolitica O:9 polysaccharide showed the signal characteristic of α-(1 → 3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for α-(1 → 3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.


Subject(s)
Brucella suis/immunology , Epitopes/immunology , O Antigens/immunology , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Brucellosis/immunology
3.
Carbohydr Res ; 357: 118-25, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22704196

ABSTRACT

We have analyzed the O-antigen polysaccharide of the previously uncharacterized Escherichia coli strain TD2158 which is a host of bacteriophage HK620. This bacteriophage recognizes and cleaves the polysaccharide with its tailspike protein (TSP). The polysaccharide preparation as well as oligosaccharides obtained from HK620TSP endoglycosidase digests were analyzed with NMR spectroscopy. Additionally, sugar analysis was performed on the O-antigen polysaccharide and MALDI-TOF MS was used in oligosaccharide analysis. The present study revealed a heterogeneous polysaccharide with a hexasaccharide repeating unit of the following structure: α-D-Glcp-(1→6|) →2)-α-L-Rhap-91→6)-α-D-Glcp-(1→4)-α-D-Ga|lp-(1→3)-α-D-GlcpNAc-(1→ ß-D-Glcp/ß-D-GlcpNAc-(1→3) A repeating unit with a D-GlcNAc substitution of D-Gal has been described earlier as characteristic for serogroup O18A1. Accordingly, we termed repeating units with D-Glc substitution at D-Gal as O18A2. NMR analyses of the polysaccharide confirmed that O18A1- and O18A2-type repeats were present in a 1:1 ratio. However, HK620TSP preferentially bound the D-GlcNAc-substituted O18A1-type repeating units in its high affinity binding pocket with a dissociation constant of 140 µM and disfavored the O18A2-type having a ß-D-Glcp-(1→3)-linked group. As a result, in hexasaccharide preparations, O18A1 and O18A2 repeats were present in a 9:1 ratio stressing the clear preference of O18A1-type repeats to be cleaved by HK620TSP.


Subject(s)
Escherichia coli/chemistry , Glycoside Hydrolases/chemistry , O Antigens/chemistry , Podoviridae/physiology , Viral Tail Proteins/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Catalytic Domain , Escherichia coli/virology , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Podoviridae/enzymology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...