Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 23(12): 1805-11, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18407486

ABSTRACT

A very sensitive assay for the rapid detection of pathogenic bacteria based on electrochemical genosensing has been designed. The assay was performed by the PCR specific amplification of the eaeA gene, related with the pathogenic activity of Escherichia coli O157:H7. The efficiency and selectivity of the selected primers were firstly studied by using standard Quantitative PCR (Q-PCR) based on TaqMan fluorescent strategy. The bacteria amplicon was detected by using two different electrochemical genosensing strategies, a highly selective biosensor based on a bulk-modified avidin biocomposite (Av-GEB) and a highly sensitive magneto sensor (m-GEC). The electrochemical detection was achieved in both cases by the enzyme marker HRP. The assay showed to be very sensitive, being able to detect 4.5 ng microl(-1) and 0.45 ng microl(-1) of the original bacterial genome after only 10 cycles of PCR amplification, when the first and the second strategies were used, respectively. Moreover, the electrochemical strategies for the detection of the amplicon showed to be more sensitive compared with Q-PCR strategies based on fluorescent labels such as TaqMan probes.


Subject(s)
Biosensing Techniques/instrumentation , Colony Count, Microbial/instrumentation , Electrochemistry/instrumentation , Escherichia coli O157/genetics , Escherichia coli O157/isolation & purification , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Biosensing Techniques/methods , Colony Count, Microbial/methods , Expressed Sequence Tags
2.
Biosens Bioelectron ; 22(8): 1707-15, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17085033

ABSTRACT

A novel and very sensitive electrochemical immunosensing strategy for the detection of atrazine based on affinity biocomposite transducers is presented. Firstly, the graphite-epoxy composite transducer was bulk-modified with different universal affinity biomolecules, such as avidin and Protein A. Two strategies for the immobilization of the anti-atrazine antibodies on both biocomposite transducers were evaluated: 'wet-affinity' and 'dry-assisted affinity' immobilization. Finally, the performance of a novel anti-atrazine immunocomposite bulk-modified with anti-atrazine antibodies was also evaluated. The better immobilization performance of the anti-atrazine antibodies was achieved by 'dry-assisted affinity' immobilization on Protein A (2%) graphite-epoxy biocomposite (ProtA(2%)-GEB) as a transducer. The immunological reaction for the detection of atrazine performed on the ProtA(2%)-GEB biosensors is based on a direct competitive assay using atrazine-HRP tracer as the enzymatic label. The electrochemical detection is thus achieved through a suitable substrate and a mediator for the enzyme HRP. This novel strategy was successfully evaluated using spiked orange juice samples. The detection limit for atrazine in orange juices using the competitive electrochemical immunosensing assay was found to be 6 x 10(-3) microgL-1 (0.03 nmolL-1) thus this biosensing method accomplishes by far the LODs required for the European Community directives for potable water and food samples (0.1 microgL-1). This strategy offers great promise for rapid, simple, cost effective, and on-site biosensing of biological, food, and environmental samples.


Subject(s)
Atrazine/analysis , Biosensing Techniques/methods , Immunoassay/methods , Pesticide Residues/analysis , Atrazine/immunology , Electrochemistry
3.
Biosens Bioelectron ; 22(9-10): 2184-91, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17126544

ABSTRACT

A novel electrochemical immunosensing strategy for the detection of sulfonamide antibiotics in milk based on magnetic beads is presented. Among the different strategies for immobilizing the class-specific anti-sulfonamide antibody to the magnetic beads--such as those based on the use of Protein A or carboxylate modified magnetic beads - ,the best strategy was found to be the covalent bonding on tosyl-activated magnetic beads. The immunological reaction for the detection of sulfonamide antibiotics performed on the magnetic bead is based on a direct competitive assay using a tracer with HRP peroxidase for the enzymatic labelling. After the immunochemical reactions, the modified magnetic beads can be easily captured by a magneto sensor made of graphite-epoxy composite (m-GEC), which is also used as the transducer for the electrochemical immunosensing. The electrochemical detection is thus achieved through a suitable substrate for the enzyme HRP and an electrochemical mediator. The electrochemical approach is also compared with a novel magneto-ELISA with optical detection. The performance of the electrochemical immunosensing strategy based on magnetic beads was successfully evaluated using spiked milk samples, and the detection limit was found to be 1.44 microg L(-1) (5.92 nmol L(-1)) for raw full cream milk. This strategy offers great promise for rapid, simple, cost-effective and on-site analysis of biological, food and environmental samples.


Subject(s)
Anti-Bacterial Agents/analysis , Electrochemistry , Magnetics , Milk/chemistry , Sulfonamides/analysis , Animals , Anti-Bacterial Agents/immunology , Immunoassay , Sulfonamides/immunology
4.
Anal Chem ; 78(6): 1780-8, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16536412

ABSTRACT

A novel electrochemical immunosensing strategy for the detection of atrazine based on magnetic beads is presented. Different coupling strategies for the modification of the magnetic beads with the specific anti-atrazine antibody have been developed. The immunological reaction for the detection of atrazine performed on the magnetic bead is based on a direct competitive assay using a peroxidase (HRP) tracer as the enzymatic label. After the immunochemical reactions, the modified magnetic beads can be easily captured by a magnetosensor made of graphite-epoxy composite, which is also used as the transducer for the electrochemical immunosensing. The electrochemical detection is thus achieved through a suitable substrate and mediator for the enzyme HRP. The electrochemical approach is also compared with a novel magneto-ELISA based on optical detection. The performance of the electrochemical immunosensing strategy based on magnetic beads was successfully evaluated using spiked real orange juice samples. The detection limit for atrazine using the competitive electrochemical magnetoimmunosensing strategy with anti-atrazine-specific antibody covalent coupled with tosyl-activated magnetic beads was found to be 6 x 10(-3) microg L(-1) (0.027 nmol L(-1)). This strategy offers great promise for rapid, simple, cost-effective, and on-site analysis of biological, food, and environmental samples.


Subject(s)
Atrazine/analysis , Magnetics , Pesticide Residues/analysis , Antibodies/chemistry , Antigen-Antibody Reactions , Electrochemistry , Immunoassay/instrumentation , Immunoassay/methods , Particle Size , Sensitivity and Specificity
5.
Biosens Bioelectron ; 21(7): 1291-301, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16098736

ABSTRACT

Rigid conducting biocomposites are versatile and effective transducing materials for the construction of a wide range of amperometric biosensors such as immunosensors, genosensors and enzymosensors, particularly if the transducer is bulk-modified with universal affinity biomolecules. The strept(avidin)-graphite-epoxy biocomposite could be considered as an universal immobilization platform whereon biotinylated DNAs, oligonucleotides, enzymes or antibodies can be captured by means of the highly affinity (strept)avidin-biotin reaction. Universal affinity biocomposite-based biosensors offer many potential advantages compared to more traditional electrochemical biosensors commonly based on a biologically surface-modified transducer. The integration of many materials into one matrix is their main advantage. As biological bulk-modified materials, the conducting biocomposites act not only as transducers, but also as reservoir for the biomaterial. After its use, the electrode surface can be renewed by a simple polishing procedure, establishing a clear advantage of these approaches relative to classical biosensors and other common biological assays. Moreover, the same material is useful for the analysis of many molecules whose determinations are based on genetic, enzymatic or immunological reactions. The different strategies for electrochemical genosensing, immunosensing and enzymosensing, all of them being dependent on the presence of a redox enzyme marker for the generation of the electrochemical signal, based on this universal affinity biocomposite platform are all presented and discussed.


Subject(s)
Biosensing Techniques/instrumentation , Coated Materials, Biocompatible/chemistry , Electrochemistry/instrumentation , Immunoassay/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Protein Array Analysis/instrumentation , Protein Interaction Mapping/instrumentation , Biosensing Techniques/methods , Coated Materials, Biocompatible/analysis , Electrochemistry/methods , Epoxy Resins/analysis , Epoxy Resins/chemistry , Equipment Design , Equipment Failure Analysis , Graphite/analysis , Graphite/chemistry , Immunoassay/methods , Manufactured Materials , Molecular Probe Techniques/instrumentation , Oligonucleotide Array Sequence Analysis/methods , Protein Array Analysis/methods , Protein Interaction Mapping/methods
6.
J Immunol Methods ; 286(1-2): 35-46, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15087220

ABSTRACT

A novel rigid and renewable transducing material for electrochemical immunosensing, based on Protein A bulk-modified graphite-epoxy biocomposite (ProtA-GEB) is reported. Protein A is able to bind to the Fc region of antibodies and provide an affinity matrix for antibody immobilisation onto the transducer. The rigid conducting biocomposite acts not only as a transducer, but also as a reservoir for protein A. After use, the electrode surface can be renewed by a simple polishing procedure, highlighting a clear advantage of this new approach with respect to classical immunoassays. The performance of ProtA-GEB transducers was compared with surface-modified transducers based on a simple dry adsorption procedure, where both Protein A and directly the antibody were adsorbed onto the surface of graphite-epoxy composite (ProtA/GEC and IgG/GEC, respectively). The application of the new biocomposite material in electrochemical immunosensing was studied using a model competitive immunoassay. The immunological reaction was detected using an enzymatic-labeling procedure together with the amperometric detection through a suitable substrate (H(2)O(2)) for the enzyme (HRP). The enzymatic labelling was performed using a two-step procedure based on the biotin/streptavidin interaction as well as a one-step procedure using an antibody labelled with the enzyme. Electrochemical and microscopic characterisation of ProtA-GEB transducer, optimisation of the immunosensor design as well as the stability of this material are also reported.


Subject(s)
Biosensing Techniques/methods , Immunoassay/methods , Immunoglobulin G/chemistry , Staphylococcal Protein A/chemistry , Biosensing Techniques/instrumentation , Epoxy Compounds , Graphite , Immunoassay/instrumentation , Microscopy, Confocal , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...