Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Neuroanat ; 40(3): 243-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20621181

ABSTRACT

Extracellular matrix components consisting of large aggregating chondroitin sulphate proteoglycans accumulate around neuronal perikarya to establish perineuronal nets. These perineuronal nets surround subpopulations of neurons in many vertebrates including man. In chickens, perineuronal nets show very fast matrix maturation after hatching which is probably due to the rapid establishment of neuronal morphology and immediate functional and behavioural performance of the animals. In mammals, maturation of extracellular matrix including perineuronal nets largely depends upon specific afferent activation. The present study shows that extracellular matrix maturation in mesencephalic, diencephalic and telencephalic visual centers of chicks tectofugal system is not principally determined by light activation. Perineuronal nets show an equally developed phenotypic character on monocularly light deprived animals in all investigated brain regions. Results suggest that establishment of extracellular matrix and perineuronal nets are largely activity-independent in the investigated precocial bird.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix/metabolism , Visual Cortex/growth & development , Visual Cortex/metabolism , Animals , Chickens , Female , Male
2.
J Chem Neuroanat ; 28(1-2): 27-36, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15363488

ABSTRACT

The striatum is reciprocally connected to the brainstem dopaminergic nuclei and receives a strong dopaminergic input. In the present study the spatial relation between the dopaminergic and dopaminoceptive structures of the avian medial striatum (formerly: lobus parolfactorius) was observed by confocal laser scanning microscope in the domestic chick (Gallus domesticus). We also analysed the connections in the area ventralis tegmentalis and the substantia nigra. To label the dopaminergic structures, anti-tyrosine hydroxylase was used and DARPP-32 (dopamine and cAMP regulated phosphoprotein) was a marker of dopaminoceptive elements. The tyrosine hydroxylase positive fibres formed baskets of juxtapositions around the DARPP-32 containing cells of the medial striatum. However, such baskets were also observed to juxtapose DARPP-32 immunonegative cells. In the tegmentum, DARPP-32 was observed in axons descending from the telencephalon via the ansa lenticularis. These varicose fibers innervated the ventral tegmental area and substantia nigra and were often juxtaposed to dopaminergic neurons and dendrites. Approximately 40% of the striatal projection neurons targeting the ventral tegmentum, and 60% of striatal projection neurons targeting the nigra were immunoreactive to DARPP-32, as revealed by retrograde pathway tracing with Fast Blue. Endogenous dopamine may exert a retrograde synaptic effect on the afferent striato-tegmental fibers, apart from the reported extrasynaptic action. The abundance of juxtapositions observed in the avian brainstem and medial striatum corroborates the possibility of reciprocal striato-tegmental circuits, relevant to the reinforcement of behaviour.


Subject(s)
Corpus Striatum/chemistry , Nerve Net/chemistry , Nerve Tissue Proteins/analysis , Phosphoproteins/analysis , Ventral Tegmental Area/chemistry , Animals , Chickens , Corpus Striatum/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32 , Nerve Net/metabolism , Nerve Tissue Proteins/biosynthesis , Phosphoproteins/biosynthesis , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...