Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 98: 424-432, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29278852

ABSTRACT

Adipose tissue is now described as an endocrine organ secreting a number of adipokines contributing to the development of inflammation and metabolic imbalance, but also endothelial dysfunction, vascular remodeling, atherosclerosis, and ischemic stroke. Leptin, adiponectin, and resistin are the most studied adipokines which play important roles in the regulation of cardiovascular homeostasis. Leptin and adiponectin mediate both proatherogenic and antiatherogenic responses. Leptin and adiponectin have been linked to the development of coronary heart disease and may be involved in the underlying biological mechanism of ischemic stroke. Resistin, a pro-inflammatory cytokine, is predictive of atherosclerosis and poor clinical outcomes in patients with coronary artery disease and ischemic stroke. The changes in serum levels of novel adipokines apelin, visfatin are also associated with acute ischemic stroke. These adipokines have been proposed as potential prognostic biomarkers of cardiovascular mortality/morbidity and therapeutic targets in patients with cardiometabolic diseases. In this article, we summarize the biologic role of the adipokines and discuss the link between dysfunctional adipose tissue and metabolic/inflammation imbalance, consequently endothelial damage, progression of atherosclerotic disease, and the occurrence of ischemic stroke.


Subject(s)
Adipokines/metabolism , Nervous System Diseases/metabolism , Vascular Diseases/metabolism , Adipose Tissue/metabolism , Animals , Atherosclerosis/metabolism , Humans , Inflammation/metabolism , Ischemia/metabolism , Stroke/metabolism
2.
J Inflamm Res ; 9: 231-240, 2016.
Article in English | MEDLINE | ID: mdl-28008279

ABSTRACT

Human mesenchymal stem cells (MSCs) are considered to be a promising source of cells in regenerative medicine. They have large potential to differentiate into various tissue-specific populations and may be isolated from diverse tissues in desired quantities. As cells of potential autologous origin, they allow recipients to avoid the alloantigen responses. They also have the ability to create immunomodulatory microenvironment, and thus help to minimize organ damage caused by the inflammation and cells activated by the immune system. Our knowledge about the reparative, regenerative, and immunomodulatory properties of MSCs is advancing. At present, there is a very comprehensible idea on how MSCs affect the immune system, particularly in relation to the tissue and organ damage on immunological basis. Hitherto a number of effective mechanisms have been described by which MSCs influence the immune responses. These mechanisms include a secretion of soluble bioactive agents, an induction of regulatory T cells, modulation of tolerogenic dendritic cells, as well as induction of anergy and apoptosis. MSCs are thus able to influence both innate and adaptive immune responses. Soluble factors that are released into local microenvironment with their subsequent paracrine effects are keys to the activation. As a result, activated MSCs contribute to the restoration of damaged tissues or organs through various mechanisms facilitating reparative and regenerative processes as well as through immunomodulation itself and differentiation into the cells of the target tissue.

SELECTION OF CITATIONS
SEARCH DETAIL
...