Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 12(5)2024 May 30.
Article in English | MEDLINE | ID: mdl-38816232

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS: We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS: We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS: Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER: NCT00068003, NCT01174121, and NCT03412877.


Subject(s)
Antigens, Neoplasm , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Mice , Immunologic Memory , Animals , Female , Phenotype , Neoplasms/immunology
2.
Cancer Cell ; 41(12): 2154-2165.e5, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38039963

ABSTRACT

Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8+ T cells (NeoTCRPBL). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCRPBL T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts. Analysis of 100 antitumor TCR clonotypes indicates that most NeoTCRPBL populations target the same neoantigens as TILs. However, NeoTCRPBL TCR repertoire is only partially shared with TIL. Prediction and testing of NeoTCRPBL signature-derived TCRs from PBL of 6 prospective patients demonstrate high enrichment of clonotypes targeting tumor mutations, a viral oncogene, and patient-derived tumor. Thus, the NeoTCRPBL signature provides an alternative source for identifying antitumor T cells from PBL of cancer patients, enabling immune monitoring and immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Prospective Studies , Antigens, Neoplasm , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell
3.
Cancer Immunol Immunother ; 72(10): 3149-3162, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37368077

ABSTRACT

Adoptive cell transfer of tumor-infiltrating lymphocytes (TIL) can mediate durable complete responses in some patients with common epithelial cancers but does so infrequently. A better understanding of T-cell responses to neoantigens and tumor-related immune evasion mechanisms requires having the autologous tumor as a reagent. We investigated the ability of patient-derived tumor organoids (PDTO) to fulfill this need and evaluated their utility as a tool for selecting T-cells for adoptive cell therapy. PDTO established from metastases from patients with colorectal, breast, pancreatic, bile duct, esophageal, lung, and kidney cancers underwent whole exomic sequencing (WES), to define mutations. Organoids were then evaluated for recognition by autologous TIL or T-cells transduced with cloned T-cell receptors recognizing defined neoantigens. PDTO were also used to identify and clone TCRs from TIL targeting private neoantigens and define those tumor-specific targets. PDTO were successfully established in 38/47 attempts. 75% were available within 2 months, a timeframe compatible with screening TIL for clinical administration. These lines exhibited good genetic fidelity with their parental tumors, especially for mutations with higher clonality. Immunologic recognition assays demonstrated instances of HLA allelic loss not found by pan-HLA immunohistochemistry and in some cases WES of fresh tumor. PDTO could also be used to show differences between TCRs recognizing the same antigen and to find and clone TCRs recognizing private neoantigens. PDTO can detect tumor-specific defects blocking T-cell recognition and may have a role as a selection tool for TCRs and TIL used in adoptive cell therapy.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Antigens, Neoplasm , Neoplasms/metabolism , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Lymphocytes, Tumor-Infiltrating
4.
Cancer Immunol Res ; 10(8): 932-946, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35749374

ABSTRACT

Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. We performed whole-exome sequencing on 163 patients with metastatic solid cancers, identified 78 who had TP53 missense mutations, and through immunologic screening, identified 21 unique T-cell reactivities. Here, we report a library of 39 T-cell receptors (TCR) targeting TP53 mutations shared among 7.3% of patients with solid tumors. These TCRs recognized tumor cells in a TP53 mutation- and human leucocyte antigen (HLA)-specific manner in vitro and in vivo. Twelve patients with chemorefractory epithelial cancers were treated with ex vivo-expanded autologous tumor-infiltrating lymphocytes (TIL) that were naturally reactive against TP53 mutations. However, limited clinical responses (2 partial responses among 12 patients) were seen. These infusions contained low frequencies of mutant p53-reactive TILs that had exhausted phenotypes and showed poor persistence. We also treated one patient who had chemorefractory breast cancer with ACT comprising autologous peripheral blood lymphocytes transduced with an allogeneic HLA-A*02-restricted TCR specific for p53R175H. The infused cells exhibited an improved immunophenotype and prolonged persistence compared with TIL ACT and the patient experienced an objective tumor regression (-55%) that lasted 6 months. Collectively, these proof-of-concept data suggest that the library of TCRs targeting shared p53 neoantigens should be further evaluated for the treatment of patients with advanced human cancers. See related Spotlight by Klebanoff, p. 919.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasms , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Genes, T-Cell Receptor , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
5.
Science ; 375(6583): 877-884, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35113651

ABSTRACT

The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Metastasis , Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Transcriptome , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Regulatory Networks , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA-Seq , Single-Cell Analysis
6.
J Clin Oncol ; 40(16): 1741-1754, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35104158

ABSTRACT

PURPOSE: Metastatic breast cancer (mBrCa) is most often an incurable disease with only modest responses to available immunotherapies. This study investigates the immunogenicity of somatic mutations in breast cancer and explores the therapeutic efficacy in a pilot trial of mutation-reactive tumor-infiltrating lymphocytes (TILs) in patients with metastatic disease. PATIENTS AND METHODS: Forty-two patients with mBrCa refractory to previous lines of treatment underwent surgical resection of a metastatic lesion(s), isolation of TIL cultures, identification of exomic nonsynonymous tumor mutations, and immunologic screening for neoantigen reactivity. Clinically eligible patients with appropriate reactivity were enrolled into one cohort of an ongoing phase II pilot trial of adoptive cell transfer of selected neoantigen-reactive TIL, with a short course of pembrolizumab (ClinicalTrials.gov identifier: NCT01174121). RESULTS: TILs were isolated and grown in culture from the resected lesions of all 42 patients with mBrCa, and a median number of 112 (range: 6-563) nonsynonymous mutations per patient were identified. Twenty-eight of 42 (67%) patients contained TIL that recognized at least one immunogenic somatic mutation (median: 3 neoantigens per patient, range: 1-11), and 13 patients demonstrated robust reactivity appropriate for adoptive transfer. Eight patients remained clinically eligible for treatment, and six patients were enrolled on a protocol of adoptive cell transfer of enriched neoantigen-specific TIL, in combination with pembrolizumab (≤ 4 doses). Objective tumor regression was noted in three patients, including one complete response (now ongoing over 5.5 years) and two partial responses (6 and 10 months). CONCLUSION: Most patients with breast cancer generated a natural immune response targeting the expressed products of their cancer mutations. Adoptive transfer of TIL is a highly personalized experimental option for patients with mBrCa shown to be capable of mediating objective responses in this pilot trial and deserves further study.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating , Mutation , Transplantation, Autologous
7.
Nat Cancer ; 2(5): 563-574, 2021 05.
Article in English | MEDLINE | ID: mdl-34927080

ABSTRACT

Tumor neoepitopes presented by major histocompatibility complex (MHC) class I are recognized by tumor-infiltrating lymphocytes (TIL) and are targeted by adoptive T-cell therapies. Identifying which mutant neoepitopes from tumor cells are capable of recognition by T cells can assist in the development of tumor-specific, cell-based therapies and can shed light on antitumor responses. Here, we generate a ranking algorithm for class I candidate neoepitopes by using next-generation sequencing data and a dataset of 185 neoepitopes that are recognized by HLA class I-restricted TIL from individuals with metastatic cancer. Random forest model analysis showed that the inclusion of multiple factors impacting epitope presentation and recognition increased output sensitivity and specificity compared to the use of predicted HLA binding alone. The ranking score output provides a set of class I candidate neoantigens that may serve as therapeutic targets and provides a tool to facilitate in vitro and in vivo studies aimed at the development of more effective immunotherapies.


Subject(s)
Antigens, Neoplasm , Neoplasms , Antigens, Neoplasm/genetics , HLA Antigens/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Machine Learning , Neoplasms/genetics , T-Lymphocytes
8.
Cancer Cell ; 37(6): 818-833.e9, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32516591

ABSTRACT

T cells are central to all currently effective cancer immunotherapies, but the characteristics defining therapeutically effective anti-tumor T cells have not been comprehensively elucidated. Here, we delineate four phenotypic qualities of effective anti-tumor T cells: cell expansion, differentiation, oxidative stress, and genomic stress. Using a CRISPR-Cas9-based genetic screen of primary T cells we measured the multi-phenotypic impact of disrupting 25 T cell receptor-driven kinases. We identified p38 kinase as a central regulator of all four phenotypes and uncovered transcriptional and antioxidant pathways regulated by p38 in T cells. Pharmacological inhibition of p38 improved the efficacy of mouse anti-tumor T cells and enhanced the functionalities of human tumor-reactive and gene-engineered T cells, paving the way for clinically relevant interventions.


Subject(s)
Breast Neoplasms/therapy , CRISPR-Cas Systems , Immunotherapy, Adoptive/methods , Melanoma, Experimental/therapy , Phenotype , T-Lymphocytes/transplantation , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Differentiation , Female , Genetic Engineering , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes/immunology , p38 Mitogen-Activated Protein Kinases/genetics
9.
Nat Med ; 24(6): 724-730, 2018 06.
Article in English | MEDLINE | ID: mdl-29867227

ABSTRACT

Immunotherapy using either checkpoint blockade or the adoptive transfer of antitumor lymphocytes has shown effectiveness in treating cancers with high levels of somatic mutations-such as melanoma, smoking-induced lung cancers and bladder cancer-with little effect in other common epithelial cancers that have lower mutation rates, such as those arising in the gastrointestinal tract, breast and ovary1-7. Adoptive transfer of autologous lymphocytes that specifically target proteins encoded by somatically mutated genes has mediated substantial objective clinical regressions in patients with metastatic bile duct, colon and cervical cancers8-11. We present a patient with chemorefractory hormone receptor (HR)-positive metastatic breast cancer who was treated with tumor-infiltrating lymphocytes (TILs) reactive against mutant versions of four proteins-SLC3A2, KIAA0368, CADPS2 and CTSB. Adoptive transfer of these mutant-protein-specific TILs in conjunction with interleukin (IL)-2 and checkpoint blockade mediated the complete durable regression of metastatic breast cancer, which is now ongoing for >22 months, and it represents a new immunotherapy approach for the treatment of these patients.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/immunology , Mutation/genetics , Adoptive Transfer , Female , Fusion Regulatory Protein 1, Heavy Chain/genetics , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Neoplasm Metastasis , Proteasome Endopeptidase Complex/genetics , Remission Induction
10.
Clin Cancer Res ; 23(15): 4347-4353, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28377481

ABSTRACT

Purpose: The administration of autologous tumor-infiltrating lymphocytes (TILs) can mediate durable tumor regressions in patients with melanoma likely based on the recognition of immunogenic somatic mutations expressed by the cancer. There are limited data regarding the immunogenicity of mutations in breast cancer. We sought to identify immunogenic nonsynonymous mutations in a patient with triple-negative breast cancer (TNBC) to identify and isolate mutation-reactive TILs for possible use in adoptive cell transfer.Experimental Design: A TNBC metastasis was resected for TIL generation and whole-exome sequencing. Tandem minigenes or long 25-mer peptides encoding selected mutations were electroporated or pulsed onto autologous antigen-presenting cells, and reactivity of TIL was screened by upregulation of CD137 and IFNγ ELISPOT. The nature of the T-cell response against a unique nonsynonymous mutation was characterized.Results: We identified 72 nonsynonymous mutations from the tumor of a patient with TNBC. CD4+ and HLA-DRB1*1501-restricted TILs isolated from this tumor recognized a single mutation in RBPJ (recombination signal binding protein for immunoglobulin kappa J region). Analysis of 16 metastatic sites revealed that the mutation was ubiquitously present in all samples.Conclusions: Breast cancers can express naturally processed and presented unique nonsynonymous mutations that are recognized by a patient's immune system. TILs recognizing these immunogenic mutations can be isolated from a patient's tumor, suggesting that adoptive cell transfer of mutation-reactive TILs could be a viable treatment option for patients with breast cancer. Clin Cancer Res; 23(15); 4347-53. ©2017 AACR.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Female , HLA-DRB1 Chains/immunology , Humans , Lymphocytes, Tumor-Infiltrating/transplantation , Middle Aged , Mutation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Exome Sequencing
12.
Knee Surg Sports Traumatol Arthrosc ; 14(10): 940-7, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16552551

ABSTRACT

Several high tibial osteotomy (HTO) surgical techniques for the treatment of medial osteoarthritis of the varus knee have been reported. Their main objectives are the achievement of the precise correction that is necessary for the lower limb mechanical axis realignment and the alleviation of the medial joint space. Early or late recurrence of the varus deformity must be avoided and various methods of fixation have been proposed to obtain this. We present a method of single level oblique HTO with no bone removal and with blade plate fixation for the treatment of medial osteoarthritis of the knee. One hundred seventeen patients (136 knees) were operated using this technique during a 12.2-year period. In 4.5 years follow-up there were 73.8% satisfactory results while in 8.4 years follow-up there were 61.1% satisfactory results. There were 11 complications: five patients with deep vein thrombosis, four with superficial wound infection and two with temporary peroneal nerve dysfunction. This study presents the operative technique in details, evaluates the results and assesses the advantages and disadvantages of the method in relation to other techniques described in the literature.


Subject(s)
Bone Plates , Joint Deformities, Acquired/surgery , Osteoarthritis, Knee/surgery , Osteotomy/methods , Aged , Female , Follow-Up Studies , Humans , Joint Deformities, Acquired/etiology , Male , Middle Aged , Osteoarthritis, Knee/complications , Osteotomy/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...