Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 193: 105431, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32283385

ABSTRACT

BACKGROUND AND OBJECTIVE: B-spline interpolation (BSI) is a popular technique in the context of medical imaging due to its adaptability and robustness in 3D object modeling. A field that utilizes BSI is Image Guided Surgery (IGS). IGS provides navigation using medical images, which can be segmented and reconstructed into 3D models, often through BSI. Image registration tasks also use BSI to transform medical imaging data collected before the surgery and intra-operative data collected during the surgery into a common coordinate space. However, such IGS tasks are computationally demanding, especially when applied to 3D medical images, due to the complexity and amount of data involved. Therefore, optimization of IGS algorithms is greatly desirable, for example, to perform image registration tasks intra-operatively and to enable real-time applications. A traditional CPU does not have sufficient computing power to achieve these goals and, thus, it is preferable to rely on GPUs. In this paper, we introduce a novel GPU implementation of BSI to accelerate the calculation of the deformation field in non-rigid image registration algorithms. METHODS: Our BSI implementation on GPUs minimizes the data that needs to be moved between memory and processing cores during loading of the input grid, and leverages the large on-chip GPU register file for reuse of input values. Moreover, we re-formulate our method as trilinear interpolations to reduce computational complexity and increase accuracy. To provide pre-clinical validation of our method and demonstrate its benefits in medical applications, we integrate our improved BSI into a registration workflow for compensation of liver deformation (caused by pneumoperitoneum, i.e., inflation of the abdomen) and evaluate its performance. RESULTS: Our approach improves the performance of BSI by an average of 6.5×  and interpolation accuracy by 2×  compared to three state-of-the-art GPU implementations. Through pre-clinical validation, we demonstrate that our optimized interpolation accelerates a non-rigid image registration algorithm, which is based on the Free Form Deformation (FFD) method, by up to 34%. CONCLUSION: Our study shows that we can achieve significant performance and accuracy gains with our novel parallelization scheme that makes effective use of the GPU resources. We show that our method improves the performance of real medical imaging registration applications used in practice today.


Subject(s)
Computer Graphics , Surgery, Computer-Assisted , Algorithms , Computers , Imaging, Three-Dimensional
2.
Comput Methods Programs Biomed ; 192: 105430, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32171150

ABSTRACT

BACKGROUND AND OBJECTIVE: Accurate and fast vessel segmentation from liver slices remain challenging and important tasks for clinicians. The algorithms from the literature are slow and less accurate. We propose fast parallel gradient based seeded region growing for vessel segmentation. Seeded region growing is tedious when the inter connectivity between the elements is unavoidable. Parallelizing region growing algorithms are essential towards achieving real time performance for the overall process of accurate vessel segmentation. METHODS: The parallel implementation of seeded region growing for vessel segmentation is iterative and hence time consuming process. Seeded region growing is implemented as kernel termination and relaunch on GPU due to its iterative mechanism. The iterative or recursive process in region growing is time consuming due to intermediate memory transfers between CPU and GPU. We propose persistent and grid-stride loop based parallel approach for region growing on GPU. We analyze static region of interest of tiles on GPU for the acceleration of seeded region growing. RESULTS: We aim fast parallel gradient based seeded region growing for vessel segmentation from CT liver slices. The proposed parallel approach is 1.9x faster compared to the state-of-the-art. CONCLUSION: We discuss gradient based seeded region growing and its parallel implementation on GPU. The proposed parallel seeded region growing is fast compared to kernel termination and relaunch and accurate in comparison to Chan-Vese and Snake model for vessel segmentation.


Subject(s)
Computer Graphics , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...