Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Clin Invest ; 133(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37712421

ABSTRACT

BACKGROUNDSevere, early-onset fetal growth restriction (FGR) causes significant fetal and neonatal mortality and morbidity. Predicting the outcome of affected pregnancies at the time of diagnosis is difficult, thus preventing accurate patient counseling. We investigated the use of maternal serum protein and ultrasound measurements at diagnosis to predict fetal or neonatal death and 3 secondary outcomes: fetal death or delivery at or before 28+0 weeks, development of abnormal umbilical artery (UmA) Doppler velocimetry, and slow fetal growth.METHODSWomen with singleton pregnancies (n = 142, estimated fetal weights [EFWs] below the third centile, less than 600 g, 20+0 to 26+6 weeks of gestation, no known chromosomal, genetic, or major structural abnormalities) were recruited from 4 European centers. Maternal serum from the discovery set (n = 63) was analyzed for 7 proteins linked to angiogenesis, 90 additional proteins associated with cardiovascular disease, and 5 proteins identified through pooled liquid chromatography and tandem mass spectrometry. Patient and clinician stakeholder priorities were used to select models tested in the validation set (n = 60), with final models calculated from combined data.RESULTSThe most discriminative model for fetal or neonatal death included the EFW z score (Hadlock 3 formula/Marsal chart), gestational age, and UmA Doppler category (AUC, 0.91; 95% CI, 0.86-0.97) but was less well calibrated than the model containing only the EFW z score (Hadlock 3/Marsal). The most discriminative model for fetal death or delivery at or before 28+0 weeks included maternal serum placental growth factor (PlGF) concentration and UmA Doppler category (AUC, 0.89; 95% CI, 0.83-0.94).CONCLUSIONUltrasound measurements and maternal serum PlGF concentration at diagnosis of severe, early-onset FGR predicted pregnancy outcomes of importance to patients and clinicians.TRIAL REGISTRATIONClinicalTrials.gov NCT02097667.FUNDINGThe European Union, Rosetrees Trust, Mitchell Charitable Trust.


Subject(s)
Perinatal Death , Pregnancy Outcome , Female , Humans , Infant, Newborn , Pregnancy , Fetal Death , Fetal Growth Retardation/diagnostic imaging , Placenta Growth Factor
2.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37226882

ABSTRACT

Vascular endothelial growth factor receptor 2 (VEGFR2, encoded by KDR) regulates endothelial function and angiogenesis. VEGFR2 undergoes ubiquitination that programs this receptor for trafficking and proteolysis, but the ubiquitin-modifying enzymes involved are ill-defined. Herein, we used a reverse genetics screen for the human E2 family of ubiquitin-conjugating enzymes to identify gene products that regulate VEGFR2 ubiquitination and proteolysis. We found that depletion of either UBE2D1 or UBE2D2 in endothelial cells caused a rise in steady-state VEGFR2 levels. This rise in plasma membrane VEGFR2 levels impacted on VEGF-A-stimulated signalling, with increased activation of canonical MAPK, phospholipase Cγ1 and Akt pathways. Analysis of biosynthetic VEGFR2 is consistent with a role for UBE2D enzymes in influencing plasma membrane VEGFR2 levels. Cell-surface-specific biotinylation and recycling studies showed an increase in VEGFR2 recycling to the plasma membrane upon reduction in UBE2D levels. Depletion of either UBE2D1 or UBE2D2 stimulated endothelial tubulogenesis, which is consistent with increased VEGFR2 plasma membrane levels promoting the cellular response to exogenous VEGF-A. Our studies identify a key role for UBE2D1 and UBE2D2 in regulating VEGFR2 function in angiogenesis.


Subject(s)
Endothelial Cells , Ubiquitin-Conjugating Enzymes , Humans , Ubiquitin-Conjugating Enzymes/genetics , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2/genetics , Ubiquitination
3.
Invest Ophthalmol Vis Sci ; 64(5): 28, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37252731

ABSTRACT

Purpose: The purpose of this study was to evaluate clinical reports of response-loss in patients with neovascular eye diseases, such as neovascular age-related macular degeneration (AMD) and diabetic macular edema (DME), after repeated anti-vascular endothelial growth factor (VEGF) therapy. To assess experimental evidence of associations of other angiogenic growth factors and endothelial glycolytic pathways with the diseases and to propose the underlying mechanisms. Methods: Review of published clinical studies and experimental investigations. Results: Intravitreal injection of anti-VEGF biologic drugs (e.g. bevacizumab, ranibizumab, and aflibercept) is the front-line treatment for neovascular AMD and DME, and acts by halting the progression of excess blood vessel growth and leakage. Despite favorable clinical results, exudation returns in a number of patients after repeated administrations over time. Patients suffering from disease recurrence may have developed an acquired resistance to anti-VEGF therapy. We have analyzed clinical and preclinical findings on changes to angiogenic signaling pathways following VEGF-targeted treatment and hypothesize that switching to alternative pathways could potentially bypass VEGF blockade, accounting for development of resistance to anti-VEGF therapy. We have also discussed potential reprogramming of ocular endothelial glycolysis in response to VEGF antagonism and proposed that metabolic adaptations could impair blood-retinal barrier function, counteracting the clinical efficacy of VEGF-targeted therapies and contributing to a decline of response to them. Conclusions: Future studies of the mechanisms proposed in this review may shed some light on how these adaptations result in the development of acquired resistance to anti-VEGF therapy, which should help discover new therapeutic strategies for overcoming anti-VEGF resistance and improving clinical efficacy.


Subject(s)
Diabetic Retinopathy , Macular Edema , Wet Macular Degeneration , Humans , Angiogenesis Inhibitors/therapeutic use , Diabetic Retinopathy/drug therapy , Macular Edema/drug therapy , Vascular Endothelial Growth Factor A , Visual Acuity , Wet Macular Degeneration/drug therapy , Ranibizumab/therapeutic use , Bevacizumab/therapeutic use , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Intravitreal Injections , Recombinant Fusion Proteins/therapeutic use
4.
Methods Mol Biol ; 2475: 113-124, 2022.
Article in English | MEDLINE | ID: mdl-35451752

ABSTRACT

The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Animals , Calcium/metabolism , Cell Movement , Cells, Cultured , Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Phosphorylation , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Chembiochem ; 23(1): e202100463, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34647407

ABSTRACT

Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B growth factor is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP1, and developed VEGF-B C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B-derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP1 demonstrated that VEGF-B peptides bind at the canonical C-terminal arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP1 than the corresponding VEGF-A165 region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B167 derived peptides were more effective than VEGF-A165 peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease.


Subject(s)
Neuropilin-1/metabolism , Peptides/metabolism , Vascular Endothelial Growth Factor B/metabolism , Humans , Neuropilin-1/chemistry , Peptides/chemistry , Protein Binding , Vascular Endothelial Growth Factor B/chemistry
6.
Cardiovasc Res ; 118(8): 1993-2005, 2022 06 29.
Article in English | MEDLINE | ID: mdl-34270692

ABSTRACT

AIMS: The adapter protein p130Cas, encoded by the Bcar1 gene, is a key regulator of cell movement, adhesion, and cell cycle control in diverse cell types. Bcar1 constitutive knockout mice are embryonic lethal by embryonic days (E) 11.5-12.5, but the role of Bcar1 in embryonic development remains unclear. Here, we investigated the role of Bcar1 specifically in cardiovascular development and defined the cellular and molecular mechanisms disrupted following targeted Bcar1 deletions. METHODS AND RESULTS: We crossed Bcar1 floxed mice with Cre transgenic lines allowing for cell-specific knockout either in smooth muscle and early cardiac tissues (SM22-Cre), mature smooth muscle cells (smMHC-Cre), endothelial cells (Tie2-Cre), second heart field cells (Mef2c-Cre), or neural crest cells (NCC) (Pax3-Cre) and characterized these conditional knock outs using a combination of histological and molecular biology techniques. Conditional knockout of Bcar1 in SM22-expressing smooth muscle cells and cardiac tissues (Bcar1SM22KO) was embryonically lethal from E14.5-15.5 due to severe cardiovascular defects, including abnormal ventricular development and failure of outflow tract (OFT) septation leading to a single outflow vessel reminiscent of persistent truncus arteriosus. SM22-restricted loss of Bcar1 was associated with failure of OFT cushion cells to undergo differentiation to septal mesenchymal cells positive for SMC-specific α-actin, and disrupted expression of proteins and transcription factors involved in epithelial-to-mesenchymal transformation (EMT). Furthermore, knockout of Bcar1 specifically in NCC (Bcar1PAX3KO) recapitulated part of the OFT septation and aortic sac defects seen in the Bcar1SM22KO mutants, indicating a cell-specific requirement for Bcar1 in NCC essential for OFT septation. In contrast, conditional knockouts of Bcar1 in differentiated smooth muscle, endothelial cells, and second heart field cells survived to term and were phenotypically normal at birth and postnatally. CONCLUSION: Our work reveals a cell-specific requirement for Bcar1 in NCC, early myogenic and cardiac cells, essential for OFT septation, myocardialization and EMT/cell cycle regulation and differentiation to myogenic lineages.


Subject(s)
Crk-Associated Substrate Protein , Heart Defects, Congenital , Neural Crest , Animals , Crk-Associated Substrate Protein/genetics , Endothelial Cells/pathology , Heart , Heart Defects, Congenital/pathology , Mice , Mice, Knockout , Neural Crest/pathology , Transcription Factors
7.
Hum Gene Ther ; 31(21-22): 1190-1202, 2020 11.
Article in English | MEDLINE | ID: mdl-32988220

ABSTRACT

Severe fetal growth restriction (FGR) affects 1:500 pregnancies, is untreatable and causes serious neonatal morbidity and death. Reduced uterine blood flow (UBF) and lack of bioavailable VEGF due to placental insufficiency is a major cause. Transduction of uterine arteries in normal or FGR sheep and guinea pigs using an adenovirus (Ad) encoding VEGF isoforms A (Ad.VEGF-A165) and a FLAG-tagged pre-processed short form D (DΔNΔC, Ad.VEGF-DΔNΔC-FLAG) increases endothelial nitric oxide expression, enhances relaxation and reduces constriction of the uterine arteries and their branches. UBF and angiogenesis are increased long term, improving fetal growth in utero. For clinical trial development we compared Ad.VEGF vector transduction efficiency and function in endothelial cells (ECs) derived from different species. We aimed to compare the transduction efficiency and function of the pre-clinical study Ad. constructs (Ad.VEGF-A165, Ad.VEGF-DΔNΔC-FLAG) with the intended clinical trial construct (Ad.VEGF-DΔNΔC) where the FLAG tag is removed. We infected ECs from human umbilical vein, pregnant sheep uterine artery, pregnant guinea pig aorta and non-pregnant rabbit aorta, with increasing multiplicity of infection (MOI) for 24 or 48 hours of three Ad.VEGF vectors, compared to control Ad. containing the LacZ gene (Ad.LacZ). VEGF supernatant expression was analysed by ELISA. Functional assessment used tube formation assay and Erk-Akt phosphorylation by ELISA. VEGF expression was higher after Ad.VEGF-DΔNΔC-FLAG and Ad.VEGF-DΔNΔC transduction compared to Ad.VEGF-A165 in all EC types (*p < 0.001). Tube formation was higher in ECs transduced with Ad.VEGF-DΔNΔC in all species compared to other constructs (***p < 0.001, *p < 0.05 with rabbit aortic ECs). Phospho-Erk and phospho-Akt assays displayed no differences between the three vector constructs, whose effect was, as in other experiments, higher than Ad.LacZ (***p < 0.001). In conclusion, we observed high transduction efficiency and functional effects of Ad.VEGF-DΔNΔC vector with comparability in major pathway activation to constructs used in pre-clinical studies, supporting its use in a clinical trial.


Subject(s)
Adenoviridae/genetics , Dependovirus/genetics , Endothelium, Vascular/metabolism , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Placental Insufficiency/therapy , Vascular Endothelial Growth Factor A/genetics , Animals , Female , Genetic Vectors/genetics , Guinea Pigs , Human Umbilical Vein Endothelial Cells , Humans , Placental Insufficiency/genetics , Placental Insufficiency/metabolism , Placental Insufficiency/pathology , Pregnancy , Rabbits , Sheep
8.
Development ; 146(13)2019 07 02.
Article in English | MEDLINE | ID: mdl-31167777

ABSTRACT

Unlike adult mammals, zebrafish can regenerate their heart. A key mechanism for regeneration is the activation of the epicardium, leading to the establishment of a supporting scaffold for new cardiomyocytes, angiogenesis and cytokine secretion. Neuropilins are co-receptors that mediate signaling of kinase receptors for cytokines with crucial roles in zebrafish heart regeneration. We investigated the role of neuropilins in response to cardiac injury and heart regeneration. All four neuropilin isoforms (nrp1a, nrp1b, nrp2a and nrp2b) were upregulated by the activated epicardium and an nrp1a-knockout mutant showed a significant delay in heart regeneration and displayed persistent collagen deposition. The regenerating hearts of nrp1a mutants were less vascularized, and epicardial-derived cell migration and re-expression of the developmental gene wt1b was impaired. Moreover, cryoinjury-induced activation and migration of epicardial cells in heart explants were reduced in nrp1a mutants. These results identify a key role for Nrp1 in zebrafish heart regeneration, mediated through epicardial activation, migration and revascularization.


Subject(s)
Heart/physiology , Neovascularization, Physiologic/genetics , Neuropilin-1/physiology , Pericardium/physiology , Regeneration/genetics , Animals , Animals, Genetically Modified , Cell Movement/genetics , Cells, Cultured , Cold Temperature , Coronary Vessels/physiology , Heart Injuries/etiology , Heart Injuries/pathology , Heart Injuries/physiopathology , Myocytes, Cardiac/physiology , Neuropilin-1/genetics , Rats , Zebrafish/physiology
9.
Am J Physiol Cell Physiol ; 316(3): C424-C433, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30649916

ABSTRACT

Neuropilin 1 (NRP1) is important for neuronal and cardiovascular development due to its role in conveying class 3 semaphorin and vascular endothelial growth factor signaling, respectively. NRP1 is expressed in smooth muscle cells (SMCs) and mediates their migration and proliferation in cell culture and is implicated in pathological SMC remodeling in vivo. To address the importance of Nrp1 for SMC function during development, we generated conditional inducible Nrp1 SMC-specific knockout mice. Induction of early postnatal SMC-specific Nrp1 knockout led to pulmonary hemorrhage associated with defects in alveogenesis and revealed a specific requirement for Nrp1 in myofibroblast recruitment to the alveolar septae and PDGF-AA-induced migration in vitro. Furthermore, SMC-specific Nrp1 knockout inhibited PDGF-BB-stimulated SMC outgrowth ex vivo in aortic ring assays and reduced pathological arterial neointima formation in vivo. In contrast, we observed little significant effect of SMC-specific Nrp1 knockout on neonatal retinal vascularization. Our results point to a requirement of Nrp1 in vascular smooth muscle and myofibroblast function in vivo, which may have relevance for postnatal lung development and for pathologies characterized by excessive SMC and/or myofibroblast proliferation.


Subject(s)
Lung/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neuropilin-1/metabolism , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myofibroblasts/metabolism , Neointima/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism
10.
Circulation ; 139(13): 1612-1628, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30586761

ABSTRACT

BACKGROUND: Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia. METHODS: The in vitro angiogenic capacity of CNP was examined in pulmonary microvascular endothelial cells and aortic rings isolated from wild-type, endothelium-specific CNP-/-, global natriuretic peptide receptor (NPR)-B-/- and NPR-C-/- animals, and human umbilical vein endothelial cells. These studies were complemented by in vivo investigation of neovascularization and vascular remodeling after ischemia or vessel injury, and CNP/NPR-C expression and localization in tissue from patients with peripheral artery disease. RESULTS: Clinical vascular ischemia is associated with reduced levels of CNP and its cognate NPR-C. Moreover, genetic or pharmacological inhibition of CNP and NPR-C, but not NPR-B, reduces the angiogenic potential of pulmonary microvascular endothelial cells, human umbilical vein endothelial cells, and isolated vessels ex vivo. Angiogenesis and remodeling are impaired in vivo in endothelium-specific CNP-/- and NPR-C-/-, but not NPR-B-/-, mice; the detrimental phenotype caused by genetic deletion of endothelial CNP, but not NPR-C, can be rescued by pharmacological administration of CNP. The proangiogenic effect of CNP/NPR-C is dependent on activation of Gi, ERK1/2, and phosphoinositide 3-kinase γ/Akt at a molecular level. CONCLUSIONS: These data define a central (patho)physiological role for CNP in angiogenesis and vascular remodeling in response to ischemia and provide the rationale for pharmacological activation of NPR-C as an innovative approach to treating peripheral artery disease and ischemic cardiovascular disorders.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Natriuretic Peptide, C-Type/metabolism , Neovascularization, Physiologic , Signal Transduction , Animals , Cell Hypoxia , Humans , Mice , Mice, Knockout , Natriuretic Peptide, C-Type/genetics , Vascular Remodeling
11.
Arterioscler Thromb Vasc Biol ; 38(8): 1845-1858, 2018 08.
Article in English | MEDLINE | ID: mdl-29880492

ABSTRACT

Objective- NRP1(neuropilin-1) acts as a coreceptor for VEGF (vascular endothelial growth factor) with an essential role in angiogenesis. Recent findings suggest that posttranslational proteolytic cleavage of VEGF receptors may be an important mechanism for regulating angiogenesis, but the role of NRP1 proteolysis and the NRP1 species generated by cleavage in endothelial cells is not known. Here, we characterize NRP1 proteolytic cleavage in endothelial cells, determine the mechanism, and investigate the role of NRP1 cleavage in regulation of endothelial cell function. Approach and Results- NRP1 species comprising the carboxy (C)-terminal and transmembrane NRP1 domains but lacking the ligand-binding A and B regions are constitutively expressed in endothelial cells. Generation of these C-terminal domain NRP1 proteins is upregulated by phorbol ester and Ca2+ ionophore, and reduced by pharmacological inhibition of metalloproteinases, by small interfering RNA-mediated knockdown of 2 members of ADAM (a disintegrin and metalloproteinase) family, ADAMs 9 and 10, and by a specific ADAM10 inhibitor. Furthermore, VEGF upregulates expression of these NRP1 species in an ADAM9/10-dependent manner. Transduction of endothelial cells with adenoviral constructs expressing NRP1 C-terminal domain fragments inhibited VEGF-induced phosphorylation of VEGFR2 (VEGF receptor tyrosine kinase)/KDR (kinase domain insert receptor) and decreased VEGF-stimulated endothelial cell motility and angiogenesis in coculture and aortic ring sprouting assays. Conclusions- These findings identify novel NRP1 species in endothelial cells and demonstrate that regulation of NRP1 proteolysis via ADAMs 9 and 10 is a new regulatory pathway able to modulate VEGF angiogenic signaling.


Subject(s)
ADAMTS Proteins/metabolism , ADAMTS9 Protein/metabolism , Angiogenesis Inducing Agents/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Neuropilin-1/metabolism , Peptide Fragments/metabolism , Vascular Endothelial Growth Factor A/pharmacology , ADAMTS Proteins/genetics , ADAMTS9 Protein/genetics , Animals , Cell Movement/drug effects , Cells, Cultured , Coculture Techniques , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Mice , Neuropilin-1/genetics , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Proteolysis , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism
12.
J Med Chem ; 61(9): 4135-4154, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29648813

ABSTRACT

We report the design, synthesis, and biological evaluation of some potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated in the immune response to tumors, particularly in Treg cell fragility, required for PD1 checkpoint blockade. The design of these compounds was based on a previously identified compound EG00229. The design of these molecules was informed and supported by X-ray crystal structures. Compound 1 (EG01377) was identified as having properties suitable for further investigation. Compound 1 was then tested in several in vitro assays and was shown to have antiangiogenic, antimigratory, and antitumor effects. Remarkably, 1 was shown to be selective for NRP1 over the closely related protein NRP2. In purified Nrp1+, FoxP3+, and CD25+ populations of Tregs from mice, 1 was able to block a glioma-conditioned medium-induced increase in TGFß production. This comprehensive characterization of a small-molecule NRP1 antagonist provides the basis for future in vivo studies.


Subject(s)
Immunomodulation/drug effects , Neuropilin-1/antagonists & inhibitors , Small Molecule Libraries/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/biosynthesis , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Mice , Models, Molecular , Molecular Conformation , Pentanoic Acids/chemistry , Pentanoic Acids/pharmacology , Small Molecule Libraries/chemistry , T-Lymphocytes, Regulatory/immunology , Vascular Endothelial Growth Factor A/pharmacology
13.
Cells ; 7(3)2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543760

ABSTRACT

Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.

14.
FEBS J ; 285(7): 1290-1304, 2018 04.
Article in English | MEDLINE | ID: mdl-29430837

ABSTRACT

Neuropilin-1 (NRP1) is a transmembrane co-receptor involved in binding interactions with variety of ligands and receptors, including receptor tyrosine kinases. Expression of NRP1 in several cancers correlates with cancer stages and poor prognosis. Thus, NRP1 has been considered a therapeutic target and is the focus of multiple drug discovery initiatives. Vascular endothelial growth factor (VEGF) binds to the b1 domain of NRP1 through interactions between the C-terminal arginine of VEGF and residues in the NRP1-binding site including Tyr297, Tyr353, Asp320, Ser346 and Thr349. We obtained several complexes of the synthetic ligands and the NRP1-b1 domain and used X-ray crystallography and computational methods to analyse atomic details and hydration profile of this binding site. We observed side chain flexibility for Tyr297 and Asp320 in the six new high-resolution crystal structures of arginine analogues bound to NRP1. In addition, we identified conserved water molecules in binding site regions which can be targeted for drug design. The computational prediction of the VEGF ligand-binding site hydration map of NRP1 was in agreement with the experimentally derived, conserved hydration structure. Displacement of certain conserved water molecules by a ligand's functional groups may contribute to binding affinity, whilst other water molecules perform as protein-ligand bridges. Our report provides a comprehensive description of the binding site for the peptidic ligands' C-terminal arginines in the b1 domain of NRP1, highlights the importance of conserved structural waters in drug design and validates the utility of the computational hydration map prediction method in the context of neuropilin. DATABASE: The structures were deposited to the PDB with accession numbers PDB ID: 5IJR, 5IYY, 5JHK, 5J1X, 5JGQ, 5JGI.


Subject(s)
Arginine/chemistry , Neuropilin-1/chemistry , Arginine/metabolism , Binding Sites , Computer Simulation , Crystallography, X-Ray , Humans , Hydrogen/chemistry , Ligands , Models, Biological , Molecular Structure , Neuropilin-1/metabolism , Surface Plasmon Resonance
15.
Mol Cell Proteomics ; 16(2): 168-180, 2017 02.
Article in English | MEDLINE | ID: mdl-28007913

ABSTRACT

p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement.


Subject(s)
Chemotaxis/drug effects , Crk-Associated Substrate Protein/metabolism , Neovascularization, Physiologic/drug effects , Proteomics/methods , Vascular Endothelial Growth Factor A/pharmacology , Databases, Protein , Human Umbilical Vein Endothelial Cells , Humans , Mass Spectrometry , Protein Interaction Maps/drug effects , Signal Transduction/drug effects
16.
Hum Gene Ther ; 27(12): 997-1007, 2016 12.
Article in English | MEDLINE | ID: mdl-27530140

ABSTRACT

In a model of growth-restricted sheep pregnancy, it was previously demonstrated that transient uterine artery VEGF overexpression can improve fetal growth. This approach was tested in guinea-pig pregnancies, where placental physiology is more similar to humans. Fetal growth restriction (FGR) was attained through peri-conceptual nutrient restriction in virgin guinea pigs. Ad.VEGF-A165 or Ad.LacZ (1 × 1010vp) was applied at mid-gestation via laparotomy, delivered externally to the uterine circulation with thermosensitive gel. At short-term (3-8 days post surgery) or at term gestation, pups were weighed, and tissues were sampled for vector spread analysis, VEGF expression, and its downstream effects. Fetal weight at term was increased (88.01 ± 13.36 g; n = 26) in Ad.VEGF-A165-treated animals compared with Ad.LacZ-treated animals (85.52 ± 13.00 g; n = 19; p = 0.028). The brain, liver, and lung weight and crown rump length were significantly larger in short-term analyses, as well as VEGF expression in transduced tissues. At term, molecular analyses confirmed the presence of VEGF transgene in target tissues but not in fetal samples. Tissue histology analysis and blood biochemistry/hematological examination were comparable with controls. Uterine artery relaxation in Ad.VEGF-A165-treated dams was higher compared with Ad.LacZ-treated dams. Maternal uterine artery Ad.VEGF-A165 increases fetal growth velocity and term fetal weight in growth-restricted guinea-pig pregnancy.


Subject(s)
Adenoviridae/genetics , Fetal Growth Retardation/genetics , Fetal Growth Retardation/therapy , Fetal Weight/genetics , Genetic Therapy , Genetic Vectors/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Animals , Female , Guinea Pigs , Pregnancy , Regional Blood Flow
17.
Sci Rep ; 6: 27378, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27293031

ABSTRACT

Imatinib was the first targeted tyrosine kinase inhibitor to be approved for clinical use, and remains first-line therapy for Philadelphia chromosome (Ph+)-positive chronic myelogenous leukaemia. We show that treatment of human glioblastoma multiforme (GBM) tumour cells with imatinib and the closely-related drug, nilotinib, strikingly increases tyrosine phosphorylation of p130Cas, focal adhesion kinase (FAK) and the downstream adaptor protein paxillin (PXN), resulting in enhanced cell migration and invasion. Imatinib and nilotinib-induced tyrosine phosphorylation was dependent on expression of p130Cas and FAK activity and was independent of known imatinib targets including Abl, platelet derived growth factor receptor beta (PDGFRß) and the collagen receptor DDR1. Imatinib and nilotinib treatment increased two dimensional cell migration and three dimensional radial spheroid invasion in collagen. In addition, silencing of p130Cas and inhibition of FAK activity both strongly reduced imatinib and nilotinib stimulated invasion. Importantly, imatinib and nilotinib increased tyrosine phosphorylation of p130Cas, FAK, PXN and radial spheroid invasion in stem cell lines isolated from human glioma biopsies. These findings identify a novel mechanism of action in GBM cells for two well established front line therapies for cancer resulting in enhanced tumour cell motility.


Subject(s)
Crk-Associated Substrate Protein/metabolism , Focal Adhesion Kinase 1/metabolism , Glioblastoma/drug therapy , Imatinib Mesylate/pharmacology , Neoplasm Invasiveness/pathology , Proto-Oncogene Proteins c-abl/metabolism , Pyrimidines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Discoidin Domain Receptor 1/metabolism , Glioblastoma/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Paxillin/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Signal Transduction/drug effects
18.
Biol Open ; 5(5): 571-83, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27044325

ABSTRACT

Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

19.
Biol Reprod ; 94(6): 142, 2016 06.
Article in English | MEDLINE | ID: mdl-27103444

ABSTRACT

Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period.


Subject(s)
Fetal Growth Retardation/therapy , Genetic Therapy , Vascular Endothelial Growth Factor A/genetics , Adenoviridae , Animals , Animals, Newborn/growth & development , Body Composition , DNA Methylation , Female , Fetal Development , Glucose Tolerance Test , Pregnancy , Pregnancy Outcome , Sheep
20.
FEBS J ; 283(10): 1921-34, 2016 05.
Article in English | MEDLINE | ID: mdl-26991001

ABSTRACT

Neuropilin-2 is a transmembrane receptor involved in lymphangiogenesis and neuronal development. In adults, neuropilin-2 and its homologous protein neuropilin-1 have been implicated in cancers and infection. Molecular determinants of the ligand selectivity of neuropilins are poorly understood. We have identified and structurally characterized a zinc ion binding site on human neuropilin-2. The neuropilin-2-specific zinc ion binding site is located near the interface between domains b1 and b2 in the ectopic region of the protein, remote from the neuropilin binding site for its physiological ligand, i.e. vascular endothelial growth factor. We also present an X-ray crystal structure of the neuropilin-2 b1 domain in a complex with the C-terminal sub-domain of VEGF-A. Zn(2+) binding to neuropilin-2 destabilizes the protein structure but this effect was counteracted by heparin, suggesting that modifications by glycans and zinc in the extracellular matrix may affect functional neuropilin-2 ligand binding and signalling activity.


Subject(s)
Neuropilin-2/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zinc/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Neuropilin-2/chemistry , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...