Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 53(2): 149-60, 1997 Jan 24.
Article in English | MEDLINE | ID: mdl-9037247

ABSTRACT

Nuclear factor kappa B (NF-kappa B) is a potent and pleiotropic transcription factor that can be activated by a wide variety of inducers, including interleukin-1 (IL-1). Although the detailed activation mechanism of NF-kappa B is still under investigation, it requires both phosphorylation and degradation of its inhibitory subunit I kappa B and the presence of an oxidative environment. In this study, we systematically evaluated the influence of glutathione peroxidase, glutathione reductase and catalase on IL-1-induced NF-kappa B activation by analysing the effect of specific inhibitors of these enzymes. For the three antioxidant enzymes mentioned, their inhibition correlated with an overactivation of NF-kappa B, particularly for glutathione peroxidase. Inversely, we tested the response of glutathione peroxidase-transfected cells on NF-kappa B activation, which was lower as compared with the parental cells. Furthermore, interleukin-6 production also correlated perfectly with the reduced level of NF-kappa B activation is these experiments. The results clearly show that NF-kappa B activation is, strongly dependent on the antioxidant potential of the cells, especially on the activity of reduced glutathione-dependent enzymes such as glutathione peroxidase. The results support the hypothesis that the level of the oxidised glutathione:reduced glutathione ratio and the activity of intracellular antioxidant enzymes play a major role in NF-kappa B tine tuning.


Subject(s)
Catalase/physiology , Glutathione Peroxidase/physiology , Glutathione Reductase/physiology , Interleukin-1/pharmacology , NF-kappa B/metabolism , Amitrole/pharmacology , Carmustine/pharmacology , Cell Line, Transformed , DNA/metabolism , Glutathione/metabolism , Humans , Hydrogen Peroxide/toxicity
2.
Mech Ageing Dev ; 51(3): 283-97, 1990 Feb 15.
Article in English | MEDLINE | ID: mdl-2308398

ABSTRACT

Glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase are the most important enzymes of the cell antioxidant defense system. However, these molecules are themselves susceptible to oxidation. The aim of this work was to estimate to what extent this system could be inactivated by its own substrates. We tested the effect of hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and hydroxyl and superoxide radicals on GPX, SOD and catalase. For GPX, a 50% inactivation was observed at 10(-1) M (30 min, 37 degrees C) for hydrogen peroxide, 3 x 10(-4) M (15 min, 37 degrees C) for cumene hydroperoxide and 5 x 10(-5) M (11 min, 37 degrees C) for t-butyl hydroperoxide. Unlike the hydroxyl radicals, superoxide anions did not inactivate this enzyme. Catalase was inactivated by hydroxyl radicals and by superoxide anions but organic peroxides had no effect. SOD was inactivated by 50% by hydrogen peroxide at 4 x 10(-4) M (20 min, 37 degrees C), but organic peroxides and hydroxyl radicals were ineffective on this enzyme. Since the three enzymes of the antioxidant system are susceptible to at least one of the oxidative reactive molecules, in the case of high oxidative stresses such an inhibition could take place, leading to an irreversible autocatalytical process in which the production rate of the oxidants will continuously increase, leading to cell death.


Subject(s)
Catalase/metabolism , Glutathione Peroxidase/metabolism , Peroxides/pharmacology , Superoxide Dismutase/metabolism , Free Radicals , Humans , In Vitro Techniques
3.
Exp Cell Res ; 179(2): 581-9, 1988 Dec.
Article in English | MEDLINE | ID: mdl-3191955

ABSTRACT

Antibodies were prepared against glutathione peroxidase, superoxide dismutase, and catalase. Inhibition of the enzyme activity was obtained with anti-Gpx and anti-SOD antibodies but not with anti-CAT antibodies. The antibodies were then injected into human fibroblasts and bovine chondrocytes in culture either under normal conditions or under 1 atm of oxygen. The injected anti-Gpx and anti-SOD antibodies increased the mortality rate of the fibroblasts incubated under 1 atm of oxygen. However, when cells were incubated under normal atmosphere, anti-Gpx antibodies inhibited the division while anti-SOD antibodies increased this capacity. Anti-Gpx antibodies injected into chondrocytes decreased their viability. Injection of control antiserum had no effect. These data stress the primary importance of Gpx as antioxidant under all conditions and the relative efficiency of SOD according to the balance between the radical production and the activity of the other antioxidant systems.


Subject(s)
Antibodies , Glutathione Peroxidase/immunology , Superoxide Dismutase/immunology , Animals , Cattle , DNA Polymerase II/metabolism , Humans , Microinjections
SELECTION OF CITATIONS
SEARCH DETAIL
...