Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38765963

ABSTRACT

Spread and aggregation of misfolded α-synuclein (aSyn) within the brain is the pathologic hallmark of Lewy body diseases (LBD), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While evidence exists for multiple aSyn protein conformations, often termed "strains" for their distinct biological properties, it is unclear whether PD and DLB result from aSyn strain differences, and biomarkers that differentiate PD and DLB are lacking. Moreover, while pathological forms of aSyn have been detected outside the brain ( e.g., in skin, gut, blood), the functional significance of these peripheral aSyn species is unclear. Here, we developed assays using monoclonal antibodies selective for two different aSyn species generated in vitro - termed Strain A and Strain B - and used them to evaluate human brain tissue, cerebrospinal fluid (CSF), and plasma, through immunohistochemistry, enzyme-linked immunoassay, and immunoblotting. Surprisingly, we found that plasma aSyn species detected by these antibodies differentiated individuals with PD vs. DLB in a discovery cohort (UPenn, n=235, AUC 0.83) and a multi-site replication cohort (Parkinson's Disease Biomarker Program, or PDBP, n=200, AUC 0.72). aSyn plasma species detected by the Strain A antibody also predicted rate of cognitive decline in PD. We found no evidence for aSyn strains in CSF, and ability to template aSyn fibrillization differed for species isolated from plasma vs. brain, and in PD vs. DLB. Taken together, our findings suggest that aSyn conformational differences may impact clinical presentation and cortical spread of pathological aSyn. Moreover, the enrichment of these aSyn strains in plasma implicates a non-central nervous system source.

2.
NPJ Parkinsons Dis ; 10(1): 97, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702337

ABSTRACT

Observational studies in Parkinson's disease (PD) deeply characterize relatively small numbers of participants. The Molecular Integration in Neurological Diagnosis Initiative seeks to characterize molecular and clinical features of every PD patient at the University of Pennsylvania (UPenn). The objectives of this study are to determine the feasibility of genetic characterization in PD and assess clinical features by sex and GBA1/LRRK2 status on a clinic-wide scale. All PD patients with clinical visits at the UPenn PD Center between 9/2018 and 12/2022 were eligible. Blood or saliva were collected, and a clinical questionnaire administered. Genotyping at 14 GBA1 and 8 LRRK2 variants was performed. PD symptoms were compared by sex and gene groups. 2063 patients were approached and 1,689 (82%) were enrolled, with 374 (18%) declining to participate. 608 (36%) females were enrolled, 159 (9%) carried a GBA1 variant, and 44 (3%) carried a LRRK2 variant. Compared with males, females across gene groups more frequently reported dystonia (53% vs 46%, p = 0.01) and anxiety (64% vs 55%, p < 0.01), but less frequently reported cognitive impairment (10% vs 49%, p < 0.01) and vivid dreaming (53% vs 60%, p = 0.01). GBA1 variant carriers more frequently reported anxiety (67% vs 57%, p = 0.04) and depression (62% vs 46%, p < 0.01) than non-carriers; LRRK2 variant carriers did not differ from non-carriers. We report feasibility for near-clinic-wide enrollment and characterization of individuals with PD during clinical visits at a high-volume academic center. Clinical symptoms differ by sex and GBA1, but not LRRK2, status.

3.
Science ; 377(6608): eabk0637, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35981040

ABSTRACT

Many risk loci for Parkinson's disease (PD) have been identified by genome-wide association studies (GWASs), but target genes and mechanisms remain largely unknown. We linked the GWAS-derived chromosome 7 locus (sentinel single-nucleotide polymorphism rs199347) to GPNMB through colocalization analyses of expression quantitative trait locus and PD risk signals, confirmed by allele-specific expression studies in the human brain. In cells, glycoprotein nonmetastatic melanoma protein B (GPNMB) coimmunoprecipitated and colocalized with α-synuclein (aSyn). In induced pluripotent stem cell-derived neurons, loss of GPNMB resulted in loss of ability to internalize aSyn fibrils and develop aSyn pathology. In 731 PD and 59 control biosamples, GPNMB was elevated in PD plasma, associating with disease severity. Thus, GPNMB represents a PD risk gene with potential for biomarker development and therapeutic targeting.


Subject(s)
Membrane Glycoproteins , Parkinson Disease , alpha-Synuclein , Brain/metabolism , Genome-Wide Association Study , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Polymorphism, Single Nucleotide , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
NPJ Parkinsons Dis ; 8(1): 68, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655068

ABSTRACT

The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.

5.
Ann Neurol ; 92(2): 255-269, 2022 08.
Article in English | MEDLINE | ID: mdl-35593028

ABSTRACT

OBJECTIVE: Using a multi-cohort, discovery-replication-validation design, we sought new plasma biomarkers that predict which individuals with Parkinson's disease (PD) will experience cognitive decline. METHODS: In 108 discovery cohort PD individuals and 83 replication cohort PD individuals, we measured 940 plasma proteins on an aptamer-based platform. Using proteins associated with subsequent cognitive decline in both cohorts, we trained a logistic regression model to predict which patients with PD showed fast (> = 1 point drop/year on Montreal Cognitive Assessment [MoCA]) versus slow (< 1 point drop/year on MoCA) cognitive decline in the discovery cohort, testing it in the replication cohort. We developed alternate assays for the top 3 proteins and confirmed their ability to predict cognitive decline - defined by change in MoCA or development of incident mild cognitive impairment (MCI) or dementia - in a validation cohort of 118 individuals with PD. We investigated the top plasma biomarker for causal influence by Mendelian randomization (MR). RESULTS: A model with only 3 proteins (melanoma inhibitory activity protein [MIA], C-reactive protein [CRP], and albumin) separated fast versus slow cognitive decline subgroups with an area under the curve (AUC) of 0.80 in the validation cohort. The individuals with PD in the validation cohort in the top quartile of risk for cognitive decline based on this model were 4.4 times more likely to develop incident MCI or dementia than those in the lowest quartile. Genotypes at MIA single nucleotide polymorphism (SNP) rs2233154 associated with MIA levels and cognitive decline, providing evidence for MIA's causal influence. CONCLUSIONS: An easily obtained plasma-based predictor identifies individuals with PD at risk for cognitive decline. MIA may participate causally in development of cognitive decline. ANN NEUROL 2022;92:255-269.


Subject(s)
Cognitive Dysfunction , Dementia , Parkinson Disease , Albumins , Biomarkers , C-Reactive Protein/chemistry , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Dementia/complications , Extracellular Matrix Proteins/blood , Humans , Neoplasm Proteins/blood , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/psychology , Serum Albumin/chemistry
6.
Int J Psychophysiol ; 110: 47-55, 2016 12.
Article in English | MEDLINE | ID: mdl-27742258

ABSTRACT

The Trier Social Stress Test (TSST) is considered a reliable paradigm for inducing psychosocial stress. Virtual reality (VR) has successfully been applied to ensure a greater degree of efficiency and standardization in the TSST. Studies using the TSST in VR (VR-TSST) have reported significant stress reactions, with subjective and peripheral physiological reactions comparable to those in response to the in vivo TSST and with lower cortisol reactions. The current study examined whether an additional virtual competitive factor triggers larger stress responses than a standard VR-TSST. Forty-five male participants were randomly assigned to either in vivo TSST, VR-TSST (VR) or VR-TSST with a virtual competitor (VR+). A significant increase of self-reported stress, electrodermal activity, and heart rate indicated a pronounced stress reaction with no differences between groups. For salivary cortisol, however, responder rates differed significantly between groups, with in vivo participants showing overall higher response rates (86%) than participants of both VR groups (VR: 33%, VR+: 47%). In contrast, participants of both VR groups judged the task significantly more challenging than did in vivo TSST participants. In sum, our results indicate successful stress induction in all experimental conditions, and a marked dissociation of salivary cortisol levels on the one hand, and the physiological and psychological stress reactions on the other hand. The competitive scenario did not significantly enhance stress reactions. VR technology may serve as a standardized tool for inducing social stress in experimental settings, but further research is needed to clarify why the stress reaction as assessed by cortisol differs from peripheral and subjective stress reactions in VR.


Subject(s)
Galvanic Skin Response/physiology , Heart Rate/physiology , Hydrocortisone/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Virtual Reality , Adult , Humans , Male , Psychological Tests , Saliva/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...