Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1866(12): 130247, 2022 12.
Article in English | MEDLINE | ID: mdl-36162732

ABSTRACT

BACKGROUND: Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. METHODS: Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. RESULTS: Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. CONCLUSIONS: The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. SIGNIFICANCE: Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.


Subject(s)
Carboxy-Lyases , Flavin Mononucleotide , Catalytic Domain , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Prenylation , Protons , Catalysis
2.
J Phys Chem B ; 124(46): 10353-10364, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33146535

ABSTRACT

Herein we present the results of an in-depth simulation study of LinA and its two variants. In our analysis, we combined the exploration of protein conformational dynamics with and without bound substrates (hexachlorocyclohexane (HCH) isomers) performed using molecular dynamics simulation followed by the extraction of the most frequently visited conformations and their characteristics with a detailed description of the interactions taking place in the active site between the respective HCH molecule and the first shell residues by using symmetry-adapted perturbation theory (SAPT) calculations. A detailed investigation of the conformational space of LinA substates has been accompanied by description of enzymatic catalytic steps carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) potential along with the computation of the potential of mean force (PMF) to estimate the free energy barriers for the studied transformations: dehydrochlorination of γ-, (-)-α-, and (+)-α-HCH by LinA-type I and -type II variants. The applied combination of computational techniques allowed us not only to characterize two LinA types but also to point to the most important differences between them and link their features to catalytic efficiency each of them possesses toward the respective ligand. More importantly it has been demonstrated that type I protein is more mobile, its active site has a larger volume, and the dehydrochlorination products are stabilized more strongly than in the case of type II enzyme, due to differences in the residues present in the active sites. Additionally, interaction energy calculations revealed very interesting patterns not predicted before but having the potential to be utilized in any attempts of improving LinA catalytic efficiency. On the basis of all these observations, LinA-type I protein seems to be more preorganized for the dehydrochlorination reaction it catalyzes than the type II variant.


Subject(s)
Hexachlorocyclohexane , Lyases , Bacterial Proteins , Catalytic Domain , Lyases/metabolism
3.
Arch Biochem Biophys ; 681: 108264, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31945312

ABSTRACT

Serum amyloid A variant 1.1 (SAA1.1) is an acute phase protein. In response to injury, inflammation or infection its production increases highly, which may lead to aggregation of the protein and accumulation of its deposits in various organs. Due to the cellular toxicity of the aggregates, as well as the fact that accumulated deposits are a burden that obstructs proper functioning of the affected tissues, it is vital to find a way to suppress the process of pathological aggregates formation. To make this possible, it is necessary to investigate thoroughly the oligomerization process and recognize factors that may influence its course. Some previous studies showed that aromatic interactions are important to the potential of an inhibitor to suppress the aggregation process. In our research we had proved that a five-residue peptide RSFFS (saa1-5) is an efficient inhibitor of aggregation of the most amyloidogenic fragment of SAA1.1, SAA1-12. In the present work the oligomerization and aggregation propensity of SAA1-12 was compared to that of SAA1-27, in order to determine the contribution of the sequence which extends beyond the most amyloidogenic region but encompasses residues reportedly involved in the stabilization of the SAA native conformation. Thioflavin T fluorescence assay, quantitative chromatographic analysis of the insoluble fraction and transmission electron microscopy allowed for a deeper insight into the SAA aggregation process and the morphology of aggregates. Substitutions of Phe3 and/or Phe4 residues in saa1-5 sequence with tryptophan, tyrosine, homophenylalanine, naphthylalanine and ß,ß-diphenylalanine allowed to study the influence of different aromatic systems on the aggregation of SAA1-12 and SAA1-27, and evaluate these results in relation to hSAA1.1 protein. Our results indicate that compounds with aromatic moieties can affect the course of the aggregation process and change the ratio between the soluble and insoluble aggregates.


Subject(s)
Amino Acids, Aromatic/pharmacology , Amyloidosis/drug therapy , Oligopeptides/pharmacology , Serum Amyloid A Protein/metabolism , Amino Acids, Aromatic/chemistry , Amyloidosis/metabolism , Humans , Molecular Dynamics Simulation , Oligopeptides/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism
4.
J Comput Chem ; 41(3): 266-271, 2020 01 30.
Article in English | MEDLINE | ID: mdl-31660624

ABSTRACT

Molecular Dynamics Made Simple (MDMS) is software that facilitates performing molecular dynamics (MD) simulations of solvated protein/protein-ligand complexes with Amber, one of the most popular MD codes. It guides users through the whole process of running MD starting with choosing a protein structure, preparing the model, parametrization of the system, establishing parameters for controlling MD, and finally running simulations. By accommodating every step required for running MD, this software ensures that the simulations performed by a user will provide as realistic insight as it is possible. Its sequential structure and a text-based interface ensure ease of use, while the flexibility required for complex cases is still preserved. MDMS also provides a very time-efficient and streamlined method to start MD simulations, which makes it a feasible tool for both novices and experienced computational chemists. © 2019 Wiley Periodicals, Inc.

5.
Chembiochem ; 19(22): 2403-2409, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30136768

ABSTRACT

Up until now, it has remained elusive as to why the flavin prenyltransferase UbiX requires dimethylallyl monophosphate (DMAP) as one of its cosubstrates instead of dimethylallyl pyrophosphate (DMAPP), even though the former is not used in metabolic pathways, while the latter is a common isoprenoid precursor. Herein, mainly on the basis of molecular dynamics (MD) simulations, we demonstrate that the selectivity of UbiX may be governed by its conformational dynamics. The hydrogen-bonding network of UbiX does not facilitate a proper encompassing of DMAPP. This induces significant conformational changes of the enzyme that result mostly in unreactive trajectories, whereas DMAP remains at a catalytically competent position throughout the performed simulations. Within the presented study, we provide a justification for the atypical selectivity of UbiX.


Subject(s)
Dimethylallyltranstransferase/chemistry , Hemiterpenes/metabolism , Molecular Conformation , Organophosphorus Compounds/metabolism , Flavin Mononucleotide/metabolism , Hydrogen Bonding , Ligands , Molecular Dynamics Simulation , Substrate Specificity
6.
J Phys Chem A ; 121(12): 2311-2321, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28248520

ABSTRACT

Herein, we present a combined (experimental and computational) study of the Finkelstein reaction in condensed phase, where bromine is substituted by iodine in 2-bromoethylbenzene, in the presence of either acetone or acetonitrile as a solvent. Performance of various density functional theory and ab initio methods were tested for reaction barrier heights as well as for bromine and carbon kinetic isotope effects (KIEs). Two different implicit solvation models were examined (PCM and SMD). Theoretically predicted KIEs were compared with experimental values, while reaction barrier heights were assessed using the CCSD(T)-level and experimental energies as reference. In general, although the tested parameters (energies and KIEs) do not exhibit any substantial difference upon a change of the solvent, the different behavior of the theoretical methods was observed depending on the solvent. With respect to isotope effects, both PCM and SMD seem to perform very similarly, though results obtained with PCM are slightly closer to the experimental values. For predicting reaction barriers, utilization of either PCM or SMD solvation models yielded different results. Functionals from the ωB97 family: ωB97, ωB97X, and ωB97X-D provide the most accurate results for the studied system.

SELECTION OF CITATIONS
SEARCH DETAIL
...