Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 435(12): 167992, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36736886

ABSTRACT

Parkinson's disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.


Subject(s)
Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Antioxidants/metabolism , Dopaminergic Neurons/metabolism , Mitochondria/metabolism , Oxidative Stress/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/therapy
2.
Biochim Biophys Acta Biomembr ; 1864(1): 183776, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34547253

ABSTRACT

Alpha-synuclein (α-syn) aggregation and mitochondrial dysfunction are considered as two of the main factors associated with Parkinson's disease (PD). In the present investigation, the effectiveness of the amyloid fibrils obtained from α-syn with those of hen egg white lysozyme (HEWL), as disease-related and-unrelated proteins, to damage rat brain and rat liver mitochondria have been investigated. This was extended by looking at SH-SY5Y human neuroblastoma cells and erythrocytes, thereby investigating the significance of structural characteristics of amyloid fibrils related to their interactions with biomembranes obtained from various sources. Results presented clearly demonstrate substantial differences in the response of tested biomembranes to toxicity induced by α-syn/HEWL amyloid fibrils, highlighting a structure-function relationship. We found that fibrillar aggregates of α-syn, but not HEWL, caused a significant increase in mitochondrial ROS, loss of membrane potential, and mitochondrial swelling, in a dose-dependent manner. Toxicity was found to be more pronounced in brain mitochondria, as compared to liver mitochondria. For SH-SY5Y cells and erythrocytes, however, both α-syn and HEWL amyloid fibrils showed the capacity to induce toxicity. Taken together, these results may suggest selective toxicity of α-syn amyloid fibrils to mitochondria mediated likely by their direct interaction with the outer mitochondrial membrane, indicating a correlation between specific structural characteristics of α-syn fibrils and an organelle strongly implicated in PD pathology.


Subject(s)
Amyloid/chemistry , Brain/drug effects , Mitochondria, Liver/drug effects , alpha-Synuclein/chemistry , Amyloid/pharmacology , Animals , Brain/pathology , Cell Line, Tumor , Cell Membrane/drug effects , Chickens , Egg White/chemistry , Erythrocytes/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/pathology , Muramidase/chemistry , Muramidase/pharmacology , Parkinson Disease/genetics , Parkinson Disease/pathology , Rats , Structure-Activity Relationship , alpha-Synuclein/genetics
3.
J Vis Exp ; (151)2019 09 28.
Article in English | MEDLINE | ID: mdl-31609303

ABSTRACT

A growing body of evidence indicates that membrane permeabilization, including internal membranes such as mitochondria, is a common feature and primary mechanism of amyloid aggregate-induced toxicity in neurodegenerative diseases. However, most reports describing the mechanisms of membrane disruption are based on phospholipid model systems, and studies directly targeting events occurring at the level of biological membranes are rare. Described here is a model for studying the mechanisms of amyloid toxicity at the membrane level. For mitochondrial isolation, density gradient medium is used to obtain preparations with minimal myelin contamination. After mitochondrial membrane integrity confirmation, the interaction of amyloid fibrils arising from α-synuclein, bovine insulin, and hen egg white lysozyme (HEWL) with rat brain mitochondria, as an in vitro biological model, is investigated. The results demonstrate that treatment of brain mitochondria with fibrillar assemblies can cause different degrees of membrane permeabilization and ROS content enhancement. This indicates structure-dependent interactions between amyloid fibrils and mitochondrial membrane. It is suggested that biophysical properties of amyloid fibrils and their specific binding to mitochondrial membranes may provide explanations for some of these observations.


Subject(s)
Amyloid/metabolism , Brain/cytology , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Animals , Cell Membrane/metabolism , Insulin/metabolism , Insulin/pharmacology , Models, Biological , Muramidase/metabolism , Muramidase/pharmacology , Rats , Reactive Oxygen Species , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...