Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Ultrasound Med ; 43(8): 1461-1466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38708946

ABSTRACT

OBJECTIVES: To investigate short-term neonatal developmental outcomes in fetuses with an isolated wide or narrow cavum septi pellucidi (CSP) using new reference ranges. METHODS: A cross-sectional study on fetuses at 16 + 0 to 36 + 6 weeks of gestation between December 2020 and January 2022. CSP width reference ranges were constructed from low-risk pregnancies. Wide and narrow CSPs were defined as measurements above the 95th percentile and below the 5th percentile, respectively. For the primary outcome fetuses with normal neurosonograms were included. Neonatal developmental outcomes were assessed using the Survey of Well-being of Young Children (SWYC). RESULTS: A total of 352 fetuses were included in this study, of whom 138 were healthy and had uncomplicated neonatal outcomes. These fetuses constituted the control group and were used to construct the CSP width reference ranges. Of 185 fetuses in the neurosonography group, 9.7% had wide and 7.6% had narrow CSPs, of whom 33.3% and 22.2%, respectively, scored below the SWYC threshold for expected developmental milestones, a rate similar to that reported in the general population. CONCLUSIONS: The presence of a prenatally isolated wide or narrow CSP does not appear to increase the risk of neonatal neurodevelopmental delay.


Subject(s)
Septum Pellucidum , Ultrasonography, Prenatal , Humans , Female , Septum Pellucidum/embryology , Septum Pellucidum/diagnostic imaging , Cross-Sectional Studies , Ultrasonography, Prenatal/methods , Pregnancy , Reference Values , Infant, Newborn , Adult , Male
2.
Gastroenterology ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735402

ABSTRACT

BACKGROUND & AIMS: Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel disease are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut-barrier integrity and susceptibility to colitis is currently elusive. METHODS: Age-matched PKO and wild-type littermates were administered 3.5% dextran sulfate sodium in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. Messenger RNA and protein expression of tight junction proteins were determined by reverse transcription polymerase chain reaction and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression, and H&E staining. Gut microbiome and associated metabolome were analyzed by 16S ribosomal RNA sequencing and mass spectrometry, respectively. RESULTS: PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to dextran sulfate sodium treatment. In addition, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared with controls. Co-housing wild-type and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of tight junction proteins in the colons of wild-type mice. CONCLUSIONS: Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut-barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut-barrier integrity, and its deficiency appears to contribute to the pathogenesis of inflammatory bowel diseases.

3.
Cancers (Basel) ; 13(12)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205450

ABSTRACT

Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies.

4.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804088

ABSTRACT

Tryptophan is an essential amino acid critical for protein synthesis in humans that has emerged as a key player in the microbiota-gut-brain axis. It is the only precursor for the neurotransmitter serotonin, which is vital for the processing of emotional regulation, hunger, sleep, and pain, as well as colonic motility and secretory activity in the gut. Tryptophan catabolites from the kynurenine degradation pathway also modulate neural activity and are active in the systemic inflammatory cascade. Additionally, tryptophan and its metabolites support the development of the central and enteric nervous systems. Accordingly, dysregulation of tryptophan metabolites plays a central role in the pathogenesis of many neurologic and psychiatric disorders. Gut microbes influence tryptophan metabolism directly and indirectly, with corresponding changes in behavior and cognition. The gut microbiome has thus garnered much attention as a therapeutic target for both neurologic and psychiatric disorders where tryptophan and its metabolites play a prominent role. In this review, we will touch upon some of these features and their involvement in health and disease.


Subject(s)
Brain/metabolism , Gastrointestinal Microbiome/genetics , Serotonin/metabolism , Tryptophan/metabolism , Brain/physiology , Colon/physiology , Enteric Nervous System/physiology , Gastrointestinal Microbiome/physiology , Homeostasis/genetics , Humans , Hunger/physiology , Kynurenine , Pain/genetics , Pain/physiopathology , Serotonin/genetics , Sleep/physiology
5.
Gastroenterology ; 160(4): 1240-1255.e3, 2021 03.
Article in English | MEDLINE | ID: mdl-33189700

ABSTRACT

BACKGROUND & AIMS: The down-regulated in adenoma (DRA) protein, encoded by SLC26A3, a key intestinal chloride anion exchanger, has recently been identified as a novel susceptibility gene for inflammatory bowel disease (IBD). However, the mechanisms underlying the increased susceptibility to inflammation induced by the loss of DRA remain elusive. Compromised barrier is a key event in IBD pathogenesis. The current studies were undertaken to elucidate the impact of DRA deficiency on epithelial barrier integrity and to define underlying mechanisms. METHODS: Wild-type and DRA-knockout (KO) mice and crypt-derived colonoids were used as models for intestinal epithelial response. Paracellular permeability was measured by using fluorescein isothiocyanate-dextran flux. Immunoblotting, immunofluorescence, immunohistochemistry, and ribonucleoprotein immunoprecipitation assays were performed. Gut microbiome analysis was conducted to investigate the impact of DRA deficiency on gut microbial communities. RESULTS: DRA-KO mice exhibited an increased colonic paracellular permeability with significantly decreased levels of tight junction/adherens junction proteins, including ZO-1, occludin, and E-cadherin. A similar expression pattern of occludin and E-cadherin was observed in colonoids derived from DRA-KO mice and short hairpin RNA-mediated DRA knockdown in Caco-2 cells. Microbial analysis showed gut dysbiosis in DRA-KO mice. However, cohousing studies showed that dysbiosis played only a partial role in maintaining tight junction protein expression. Furthermore, our results showed increased binding of RNA-binding protein CUGBP1 with occludin and E-cadherin genes in DRA-KO mouse colon, suggesting that posttranscriptional mechanisms play a key role in gut barrier dysfunction. CONCLUSIONS: To our knowledge, our studies demonstrate a novel role of DRA in maintaining the intestinal epithelial barrier function and potential implications of its dysregulation in IBD pathogenesis.


Subject(s)
Antiporters/deficiency , Chloride-Bicarbonate Antiporters/deficiency , Dysbiosis/immunology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Sulfate Transporters/deficiency , Animals , Antiporters/genetics , CELF1 Protein/metabolism , Caco-2 Cells , Cadherins/metabolism , Chloride-Bicarbonate Antiporters/genetics , Disease Models, Animal , Dysbiosis/microbiology , Dysbiosis/pathology , Gene Knockdown Techniques , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Knockout , Occludin/metabolism , Permeability , Sulfate Transporters/genetics , Tight Junctions/pathology
6.
Cancer Res ; 79(16): 4057-4071, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31292163

ABSTRACT

Glioblastoma is the most common primary brain tumor in adults. While the introduction of temozolomide chemotherapy has increased long-term survivorship, treatment failure and rapid tumor recurrence remains universal. The transcriptional regulatory protein, inhibitor of DNA-binding-1 (ID1), is a key regulator of cell phenotype in cancer. We show that CRISPR-mediated knockout of ID1 in glioblastoma cells, breast adenocarcinoma cells, and melanoma cells dramatically reduced tumor progression in all three cancer systems through transcriptional downregulation of EGF, which resulted in decreased EGFR phosphorylation. Moreover, ID1-positive cells were enriched by chemotherapy and drove tumor recurrence in glioblastoma. Addition of the neuroleptic drug pimozide to inhibit ID1 expression enhanced the cytotoxic effects of temozolomide therapy on glioma cells and significantly prolonged time to tumor recurrence. Conclusively, these data suggest ID1 could be a promising therapeutic target in patients with glioblastoma. SIGNIFICANCE: These findings show that the transcriptional regulator ID1 is critical for glioblastoma initiation and chemoresistance and that inhibition of ID1 enhances the effect of temozolomide, delays tumor recurrence, and prolongs survival.


Subject(s)
Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm/physiology , Glioblastoma/drug therapy , Inhibitor of Differentiation Protein 1/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Inhibitor of Differentiation Protein 1/antagonists & inhibitors , Inhibitor of Differentiation Protein 1/genetics , Melanoma/pathology , Mice, Inbred NOD , Phosphorylation , Pimozide/administration & dosage , Pimozide/pharmacology , Temozolomide/administration & dosage , Temozolomide/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...