Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Colloid Interface Sci ; 319: 102986, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657189

ABSTRACT

Considering the importance of asymmetric membrane morphology in controlling the performance of various membrane systems as well as the rapid development of membrane technologies in different industries, the control of membrane manufacturing processes and effective parameters is considered an outstanding subject. Therefore, it seems that investigating the rheological properties of polymer solutions, including gelation behavior, viscoelasticity, and their effect on membrane formation, as well as the morphological structure of membranes, such as hollow fiber and flat sheet membranes, is a requirement for the production of asymmetric membranes with desirable properties. One of the most widely used techniques for the preparation of asymmetric membranes is phase separation. Its two main mechanisms are liquid-liquid demixing and solid-liquid demixing, which can affect the morphology of the membranes in the membrane formation process. Therefore, the membrane morphology can be greatly influenced by controlling the phase separation in the early stages. In this study, an attempt has been made to investigate the rheological behavior of polymer solutions and other factors during the membrane fabrication process, affecting the morphological structure of membranes. The principles governing the rheology of polymer solutions, such as shear, elongation, viscosity, and viscoelasticity have a vital role in determining the membrane morphology and separation performance. Due to the interaction of the rheology of polymer solutions and phase separation, the effects of changes in the rheological properties of the phase separation and the formation of membranes with different structures and morphologies are studied. Furthermore, in addition to the analysis of the effect of the relaxation time and gelation mechanisms, discussions are provided for the determination of the final membrane morphology considering the competition between the domain growth and gelation rates. Finally, the effect of controlling the rheological behavior and phase separation on the membrane structure and performance was investigated in several membrane applications.

2.
J Mater Sci Mater Med ; 21(11): 2989-98, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20803238

ABSTRACT

Fibrous scaffolds of engineered structures can be chosen as promising porous environments when an approved criterion validates their applicability for a specific medical purpose. For such biomaterials, this paper sought to investigate various structural characteristics in order to determine whether they are appropriate descriptors. A number of poly(3-hydroxybutyrate) scaffolds were electrospun; each of which possessed a distinguished architecture when their material and processing conditions were altered. Subsequent culture of mouse fibroblast cells (L929) was carried out to evaluate the cells viability on each scaffold after their attachment for 24 h and proliferation for 48 and 72 h. The scaffolds' porosity, pores number, pores size and distribution were quantified and none could establish a relationship with the viability results. Virtual reconstruction of the mats introduced an authentic criterion, "Scaffold Percolative Efficiency" (SPE), with which the above descriptors were addressed collectively. It was hypothesized to be able to quantify the efficacy of fibrous scaffolds by considering the integration of porosity and interconnectivity of the pores. There was a correlation of 80% as a good agreement between the SPE values and the spectrophotometer absorbance of viable cells; a viability of more than 350% in comparison to that of the controls.


Subject(s)
Polymers/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Efficiency , Electroplating/instrumentation , Electroplating/methods , Fibroblasts/drug effects , Fibroblasts/physiology , Filtration , Materials Testing , Mice , Models, Biological , Polymers/pharmacology , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL