Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Commun Biol ; 5(1): 964, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109574

ABSTRACT

Ultrasound in combination with the introduction of microbubbles into the vasculature effectively opens the blood brain barrier (BBB) to allow the passage of therapeutic agents. Increased permeability of the BBB is typically demonstrated with small-molecule agents (e.g., 1-nm gadolinium salts). Permeability to small-molecule agents, however, cannot reliably predict the transfer of remarkably larger molecules (e.g., monoclonal antibodies) required by numerous therapies. To overcome this issue, we developed a magnetic resonance imaging analysis based on the ΔR2* physical parameter that can be measured intraoperatively for efficient real-time treatment management. We demonstrate successful correlations between ΔR2* values and parenchymal concentrations of 3 differently sized (18 nm-44 nm) populations of liposomes in a rat model. Reaching an appropriate ΔR2* value during treatment can reflect the effective delivery of large therapeutic agents. This prediction power enables the achievement of desirable parenchymal drug concentrations, which is paramount to obtaining effective therapeutic outcomes.


Subject(s)
Brain , Gadolinium , Magnetic Resonance Imaging , Nanoparticles , Animals , Antibodies, Monoclonal , Brain/diagnostic imaging , Drug Delivery Systems/methods , Liposomes , Magnetic Resonance Imaging/methods , Rats , Salts
2.
J Neurosurg ; 135(6): 1780-1788, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34020416

ABSTRACT

OBJECTIVE: Magnetic resonance imaging-guided focused ultrasound (MRgFUS) provides real-time monitoring of patients to assess tremor control and document any adverse effects. MRgFUS of the ventral intermediate nucleus (VIM) of the thalamus has become an effective treatment option for medically intractable essential tremor (ET). The aim of this study was to analyze the correlations of clinical and technical parameters with 12-month outcomes after unilateral MRgFUS thalamotomy for ET to help guide future clinical treatments. METHODS: From October 2013 to January 2019, data on unilateral MRgFUS thalamotomy from the original pivotal study and continued-access studies from three different geographic regions were collected. Authors of the present study retrospectively reviewed those data and evaluated the efficacy of the procedure on the basis of improvement in the Clinical Rating Scale for Tremor (CRST) subscore at 1 year posttreatment. Safety was based on the rates of moderate and severe thalamotomy-related adverse events. Treatment outcomes in relation to various patient- and sonication-related parameters were analyzed in a large cohort of patients with ET. RESULTS: In total, 250 patients were included in the present analysis. Improvement was sustained throughout the 12-month follow-up period, and 184 (73.6%) of 250 patients had minimal or no disability due to tremor (CRST subscore < 10) at the 12-month follow-up. Younger age and higher focal temperature (Tmax) correlated with tremor improvement in the multivariate analysis (OR 0.948, p = 0.013; OR 1.188, p = 0.025; respectively). However, no single statistically significant factor correlated with Tmax in the multivariate analysis. The cutoff value of Tmax in predicting a CRST subscore < 10 was 55.8°C. Skull density ratio (SDR) was positively correlated with heating efficiency (ß = 0.005, p < 0.001), but no significant relationship with tremor improvement was observed. In the low-temperature group, 1-3 repetitions to the right target with 52°C ≤ Tmax ≤ 54°C was sufficient to generate sustained tremor suppression within the investigated follow-up period. The high-temperature group had a higher rate of balance disturbances than the low-temperature group (p = 0.04). CONCLUSIONS: The authors analyzed the data of 250 patients with the aim of improving practices for patient screening and determining treatment endpoints. These results may improve the safety, efficacy, and efficiency of MRgFUS thalamotomy for ET.

3.
Front Oncol ; 10: 1663, 2020.
Article in English | MEDLINE | ID: mdl-33014832

ABSTRACT

Introduction: To overcome the blood-brain barrier (BBB) which interferes with the effect of chemotherapeutic agents, we performed multiple disruptions of BBB (BBBD) with magnetic resonance-guided focused ultrasound on patients with glioblastoma (GBM) during standard adjuvant temozolomide (TMZ) chemotherapy [clinical trial registration no.NCT03712293 (clinicaltrials.gov)]. We report a 1-year follow-up result of BBBD with TMZ for GBM. Methods: From September 2018 to January 2019, six patients were enrolled (four men and two women, median age: 53 years, range: 50-67 years). Of the six patients, five underwent a total of six cycles of BBBD during standard TMZ adjuvant therapy. One patient underwent three cycles of BBBD but continued with TMZ chemotherapy. The 1-year follow-up results of these six patients were reviewed. Results: The mean follow-up duration was 15.17 ± 1.72 months. Two patients showed a recurrence of tumor at 11 and 16 months, respectively. One underwent surgery, and the other patient was restarted with TMZ chemotherapy due to the tumor location with a highly possibility of surgical complications. The survival rate up to 1 year was 100%, and the other four patients are on observation without recurrence. None of the six patients had immediate or delayed BBBD-related complications. Conclusion: Multiple BBBDs can be regarded as a safe procedure without long-term complications, and it seems to have some survival benefits. However, since TMZ partially crosses the BBB, a further extended study with large numbers would be needed to evaluate the benefits of BBBD resulting in an increase of TMZ concentration. This study opened a new therapeutic strategy for GBM by combining BBBD with a larger molecular agent.

4.
J Neurosurg ; 134(2): 475-483, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31899873

ABSTRACT

OBJECTIVE: Glioblastoma (GBM) remains fatal due to the blood-brain barrier (BBB), which interferes with the delivery of chemotherapeutic agents. The purpose of this study was to evaluate the safety and feasibility of repeated disruption of the BBB (BBBD) with MR-guided focused ultrasound (MRgFUS) in patients with GBM during standard adjuvant temozolomide (TMZ) chemotherapy. METHODS: This study was a prospective, single-center, single-arm study. BBBD with MRgFUS was performed adjacent to the tumor resection margin on the 1st or 2nd day of the adjuvant TMZ chemotherapy at the same targets for 6 cycles. T2*-weighted/gradient echo (GRE) MRI was performed immediately after every sonication trial, and comprehensive MRI was performed at the completion of all sonication sessions. Radiological, laboratory, and clinical evaluations were performed 2 days before each planned BBBD. RESULTS: From September 2018, 6 patients underwent 145 BBBD trials at various locations in the brain. The authors observed gadolinium-enhancing spots at the site of BBBD on T1-weighted MRI in 131 trials (90.3%) and 93 trials (64.1%) showed similar spots on T2*-weighted/GRE MRI. When the 2 sequences were combined, BBBD was observed in 134 targets (92.4%). The spots disappeared on follow-up MRI. There were no imaging changes related to BBBD and no clinical adverse effects during the 6 cycles. CONCLUSIONS: This study is the first in which repetitive MRgFUS was performed at the same targets with a standard chemotherapy protocol for malignant brain tumor. BBBD with MRgFUS was performed accurately, repeatedly, and safely. Although a longer follow-up period is needed, this study allows for the possibility of other therapeutic agents that previously could not be used due to the BBB.Clinical trial registration no.: NCT03712293 (clinicaltrials.gov).

5.
Front Neurosci ; 14: 592763, 2020.
Article in English | MEDLINE | ID: mdl-33510610

ABSTRACT

OBJECTIVE: Magnetic resonance-guided focused ultrasound surgery (MRgFUS) lesioning is a new treatment for brain disorders. However, the skull is a major barrier of ultrasound sonication in MRgFUS because it has an irregular surface and varies its size and shape among individuals. We recently developed the concept of skull density ratio (SDR) to select candidates for MRgFUS from among patients with essential tremor (ET). However, SDR is not the only factor contributing to successful MRgFUS lesioning treatment-refining the target through exact measurement of the ultrasonic echo in the transducer also improves treatment efficacy. In the present study, we carried out MRgFUS lesioning using an autofocusing echo imaging technique. We aimed to evaluate the safety and efficacy of this new approach, especially in patients with low SDR in whom previous focusing methods have failed. METHODS: From December 2019 to March 2020, we recruited 10 patients with ET or Parkinson's disease (PD) who had a low SDR. Two patients dropped out of the trial due to the screening failure of other medical diseases. In total, eight patients were included: six with ET who underwent MRgFUS thalamotomy and two with PD who underwent MRgFUS pallidotomy. The autofocusing echo imaging technique was used in all cases. RESULTS: The mean SDR of the patients with ET was 0.34 (range: 0.29-0.39), while that of the patients with PD was 0.41 (range: 0.38-0.44). The mean skull volume of patients with ET was 280.57 cm3 (range: 227-319 cm3), while that of the patients with PD was 287.13 cm3 (range: 271-303 cm3). During MRgFUS, a mean of 15 sonications were performed, among which a mean of 5.63 used the autofocusing technique. The mean maximal temperature (Tmax) achieved was 55.88°C (range: 52-59°C), while the mean energy delivered was 34.75 kJ (range: 20-42 kJ) among all patients. No serious adverse events occurred during or after treatment. Tmax or sonication factors (skull volume, SDR, sonication number, autofocusing score, similarity score, energy range, and power) were not correlated with autofocusing technique (p > 0.05, autofocusing score showed a p-value of 0.071). CONCLUSION: Using autofocusing echo imaging lesioning, a safe and efficient MRgFUS treatment, is available even for patients with a low SDR. Therefore, the indications for MRgFUS lesioning could be expanded to include patients with ET who have an SDR < 0.4 and those with PD who have an SDR < 0.45. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov, identifier: NCT03935581.

6.
J Korean Neurosurg Soc ; 62(6): 712-722, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31142101

ABSTRACT

OBJECTIVE: Although magnetic resonance guided focused ultrasound (MRgFUS) has been used as minimally invasive and effective neurosurgical treatment, it exhibits some limitations, mainly related to acoustic properties of the skull barrier. This study was undertaken to identify skull characteristics that contribute to optimal ultrasonic energy transmission for MRgFUS procedures. METHODS: For ex vivo skull experiments, various acoustic fields were measured under different conditions, using five non-embalmed cadaver skulls. For clinical skull analyses, brain computed tomography data of 46 patients who underwent MRgFUS ablations (18 unilateral thalamotomy, nine unilateral pallidotomy, and 19 bilateral capsulotomy) were retrospectively reviewed. Patients' skull factors and sonication parameters were comparatively analyzed with respect to the cadaveric skulls. RESULTS: Skull experiments identified three important factors related skull penetration of ultrasound, including skull density ratio (SDR), skull volume, and incidence angle of the acoustic rays against the skull surface. In clinical results, SDR and skull volume correlated with maximal temperature (Tmax) and energy requirement to achieve Tmax (p<0.05). In addition, considering the incidence angle determined by brain target location, less energy was required to reach Tmax in the central, rather than lateral targets particularly when compared between thalamotomy and capsulotomy (p<0.05). CONCLUSION: This study reconfirmed previously identified skull factors, including SDR and skull volume, for successful MRgFUS; it identified an additional factor, incidence angle of acoustic rays against the skull surface. To guarantee successful transcranial MRgFUS treatment without suffering these various skull issues, further technical improvements are required.

7.
J Ther Ultrasound ; 4: 4, 2016.
Article in English | MEDLINE | ID: mdl-26848391

ABSTRACT

BACKGROUND: The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). METHODS: Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. RESULTS: The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. CONCLUSIONS: We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.

8.
J Neurosurg ; 124(2): 411-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26361280

ABSTRACT

OBJECTIVE: Magnetic resonance-guided focused ultrasound surgery (MRgFUS) was recently introduced as treatment for movement disorders such as essential tremor and advanced Parkinson's disease (PD). Although deep brain target lesions are successfully generated in most patients, the target area temperature fails to increase in some cases. The skull is one of the greatest barriers to ultrasonic energy transmission. The authors analyzed the skull-related factors that may have prevented an increase in target area temperatures in patients who underwent MRgFUS. METHODS: The authors retrospectively reviewed data from clinical trials that involved MRgFUS for essential tremor, idiopathic PD, and obsessive-compulsive disorder. Data from 25 patients were included. The relationships between the maximal temperature during treatment and other factors, including sex, age, skull area of the sonication field, number of elements used, skull volume of the sonication field, and skull density ratio (SDR), were determined. RESULTS: Among the various factors, skull volume and SDR exhibited relationships with the maximum temperature. Skull volume was negatively correlated with maximal temperature (p = 0.023, r(2) = 0.206, y = 64.156 - 0.028x, whereas SDR was positively correlated with maximal temperature (p = 0.009, r(2) = 0.263, y = 49.643 + 11.832x). The other factors correlate with the maximal temperature, although some factors showed a tendency to correlate. CONCLUSIONS: Some skull-related factors correlated with the maximal target area temperature. Although the number of patients in the present study was relatively small, the results offer information that could guide the selection of MRgFUS candidates.


Subject(s)
Magnetic Resonance Imaging/methods , Neurosurgical Procedures/methods , Skull/diagnostic imaging , Skull/surgery , Surgery, Computer-Assisted/methods , Ultrasonic Surgical Procedures/methods , Adult , Age Factors , Aged , Essential Tremor/surgery , Female , Humans , Male , Middle Aged , Obsessive-Compulsive Disorder/surgery , Parkinson Disease/surgery , Retrospective Studies , Sex Factors , Stereotaxic Techniques , Temperature , Thalamic Nuclei/anatomy & histology , Thalamic Nuclei/surgery , Treatment Outcome , Ultrasonography , Young Adult
9.
J Neurol Neurosurg Psychiatry ; 86(3): 257-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24876191

ABSTRACT

BACKGROUND: Several options exist for surgical management of essential tremor (ET), including radiofrequency lesioning, deep brain stimulation and γ knife radiosurgery of the ventralis intermedius nucleus of the thalamus. Recently, magnetic resonance-guided focused ultrasound (MRgFUS) has been developed as a less-invasive surgical tool aimed to precisely generate focal thermal lesions in the brain. METHODS: Patients underwent tremor evaluation and neuroimaging study at baseline and up to 6 months after MRgFUS. Tremor severity and functional impairment were assessed at baseline and then at 1 week, 1 month, 3 months and 6 months after treatment. Adverse effects were also sought and ascertained by directed questions, neuroimaging results and neurological examination. RESULTS: The current feasibility study attempted MRgFUS thalamotomy in 11 patients with medication-resistant ET. Among them, eight patients completed treatment with MRgFUS, whereas three patients could not complete the treatment because of insufficient temperature. All patients who completed treatment with MRgFUS showed immediate and sustained improvements in tremors lasting for the 6-month follow-up period. Skull volume and maximum temperature rise were linearly correlated (linear regression, p=0.003). Other than one patient who had mild and delayed postoperative balance, no patient developed significant postsurgical complications; about half of the patients had bouts of dizziness during the MRgFUS. CONCLUSIONS: Our results demonstrate that MRgFUS thalamotomy is a safe, effective and less-invasive surgical method for treating medication-refractory ET. However, several issues must be resolved before clinical application of MRgFUS, including optimal patient selection and management of patients during treatment.


Subject(s)
Essential Tremor/diagnosis , Essential Tremor/surgery , Magnetic Resonance Imaging, Interventional/methods , Ultrasonic Therapy/methods , Ventral Thalamic Nuclei/surgery , Adult , Aged , Brain Mapping , Disability Evaluation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neurologic Examination , Young Adult
10.
J Neurosurg ; 122(1): 162-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25343176

ABSTRACT

OBJECT: The authors report different MRI patterns in patients with essential tremor (ET) or obsessive-compulsive disorder (OCD) after transcranial MR-guided focused ultrasound (MRgFUS) and discuss possible causes of occasional MRgFUS failure. METHODS: Between March 2012 and August 2013, MRgFUS was used to perform unilateral thalamotomy in 11 ET patients and bilateral anterior limb capsulotomy in 6 OCD patients; in all patients symptoms were refractory to drug therapy. Sequential MR images were obtained in patients across a 6-month follow-up period. RESULTS: For OCD patients, lesion size slowly increased and peaked 1 week after treatment, after which lesion size gradually decreased. For ET patients, lesions were visible immediately after treatment and markedly reduced in size as time passed. In 3 ET patients and 1 OCD patient, there was no or little temperature rise (i.e., < 52°C) during MRgFUS. Successful and failed patient groups showed differences in their ratio of cortical-to-bone marrow thickness (i.e., skull density). CONCLUSIONS: The authors found different MRI pattern evolution after MRgFUS for white matter and gray matter. Their results suggest that skull characteristics, such as low skull density, should be evaluated prior to MRgFUS to successfully achieve thermal rise.


Subject(s)
Essential Tremor/surgery , Internal Capsule/surgery , Neurosurgical Procedures/methods , Obsessive-Compulsive Disorder/surgery , Surgery, Computer-Assisted/methods , Thalamic Nuclei/surgery , Ultrasonic Surgical Procedures/methods , Essential Tremor/pathology , Humans , Internal Capsule/pathology , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder/pathology , Skull/surgery , Thalamic Nuclei/pathology , Treatment Failure
11.
N Engl J Med ; 369(7): 640-8, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23944301

ABSTRACT

BACKGROUND: Recent advances have enabled delivery of high-intensity focused ultrasound through the intact human cranium with magnetic resonance imaging (MRI) guidance. This preliminary study investigates the use of transcranial MRI-guided focused ultrasound thalamotomy for the treatment of essential tremor. METHODS: From February 2011 through December 2011, in an open-label, uncontrolled study, we used transcranial MRI-guided focused ultrasound to target the unilateral ventral intermediate nucleus of the thalamus in 15 patients with severe, medication-refractory essential tremor. We recorded all safety data and measured the effectiveness of tremor suppression using the Clinical Rating Scale for Tremor to calculate the total score (ranging from 0 to 160), hand subscore (primary outcome, ranging from 0 to 32), and disability subscore (ranging from 0 to 32), with higher scores indicating worse tremor. We assessed the patients' perceptions of treatment efficacy with the Quality of Life in Essential Tremor Questionnaire (ranging from 0 to 100%, with higher scores indicating greater perceived disability). RESULTS: Thermal ablation of the thalamic target occurred in all patients. Adverse effects of the procedure included transient sensory, cerebellar, motor, and speech abnormalities, with persistent paresthesias in four patients. Scores for hand tremor improved from 20.4 at baseline to 5.2 at 12 months (P=0.001). Total tremor scores improved from 54.9 to 24.3 (P=0.001). Disability scores improved from 18.2 to 2.8 (P=0.001). Quality-of-life scores improved from 37% to 11% (P=0.001). CONCLUSIONS: In this pilot study, essential tremor improved in 15 patients treated with MRI-guided focused ultrasound thalamotomy. Large, randomized, controlled trials will be required to assess the procedure's efficacy and safety. (Funded by the Focused Ultrasound Surgery Foundation; ClinicalTrials.gov number, NCT01304758.).


Subject(s)
Essential Tremor/therapy , Stereotaxic Techniques , Ultrasonic Therapy , Ventral Thalamic Nuclei , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pilot Projects , Ultrasonic Therapy/adverse effects , Ultrasonic Therapy/methods , Ventral Thalamic Nuclei/pathology
13.
J Neurosurg ; 118(5): 1035-45, 2013 May.
Article in English | MEDLINE | ID: mdl-23330996

ABSTRACT

OBJECT: Intracerebral hemorrhage (ICH) is a major cause of death and disability throughout the world. Surgical techniques are limited by their invasive nature and the associated disability caused during clot removal. Preliminary data have shown promise for the feasibility of transcranial MR-guided focused ultrasound (MRgFUS) sonothrombolysis in liquefying the clotted blood in ICH and thereby facilitating minimally invasive evacuation of the clot via a twist-drill craniostomy and aspiration tube. METHODS AND RESULTS: In an in vitro model, the following optimum transcranial sonothrombolysis parameters were determined: transducer center frequency 230 kHz, power 3950 W, pulse repetition rate 1 kHz, duty cycle 10%, and sonication duration 30 seconds. Safety studies were performed in swine (n = 20). In a swine model of ICH, MRgFUS sonothrombolysis of 4 ml ICH was performed. Magnetic resonance imaging and histological examination demonstrated complete lysis of the ICH without additional brain injury, blood-brain barrier breakdown, or thermal necrosis due to sonothrombolysis. A novel cadaveric model of ICH was developed with 40-ml clots implanted into fresh cadaveric brains (n = 10). Intracerebral hemorrhages were successfully liquefied (> 95%) with transcranial MRgFUS in a highly accurate fashion, permitting minimally invasive aspiration of the lysate under MRI guidance. CONCLUSIONS: The feasibility of transcranial MRgFUS sonothrombolysis was demonstrated in in vitro and cadaveric models of ICH. Initial in vivo safety data in a swine model of ICH suggest the process to be safe. Minimally invasive treatment of ICH with MRgFUS warrants evaluation in the setting of a clinical trial.


Subject(s)
Cerebral Hemorrhage/therapy , Magnetic Resonance Imaging/methods , Minimally Invasive Surgical Procedures/methods , Ultrasonic Therapy/methods , Animals , Cadaver , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Disease Models, Animal , Feasibility Studies , Humans , In Vitro Techniques , Mechanical Thrombolysis/methods , Swine , Treatment Outcome , Ultrasonography
14.
J Neurosurg ; 118(2): 319-28, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23157185

ABSTRACT

OBJECT: Transcranial MR-guided focused ultrasound surgery (MRgFUS) is evolving as a treatment modality in neurosurgery. Until now, the trigeminal nerve was believed to be beyond the treatment envelope of existing high-frequency transcranial MRgFUS systems. In this study, the authors explore the feasibility of targeting the trigeminal nerve in a cadaveric model with temperature assessments using computer simulations and an in vitro skull phantom model fitted with thermocouples. METHODS: Six trigeminal nerves from 4 unpreserved cadavers were targeted in the first experiment. Preprocedural CT scanning of the head was performed to allow for a skull correction algorithm. Three-Tesla, volumetric, FIESTA MRI sequences were performed to delineate the trigeminal nerve and any vascular structures of the cisternal segment. The cadaver was positioned in a focused ultrasound transducer (650-kHz system, ExAblate Neuro, InSightec) so that the focus of the transducer was centered at the proximal trigeminal nerve, allowing for targeting of the root entry zone (REZ) and the cisternal segment. Real-time, 2D thermometry was performed during the 10- to 30-second sonication procedures. Post hoc MR thermometry was performed on a computer workstation at the conclusion of the procedure to analyze temperature effects at neuroanatomical areas of interest. Finally, the region of the trigeminal nerve was targeted in a gel phantom encased within a human cranium, and temperature changes in regions of interest in the skull base were measured using thermocouples. RESULTS: The trigeminal nerves were clearly identified in all cadavers for accurate targeting. Sequential sonications of 25-1500 W for 10-30 seconds were successfully performed along the length of the trigeminal nerve starting at the REZ. Real-time MR thermometry confirmed the temperature increase as a narrow focus of heating by a mean of 10°C. Postprocedural thermometry calculations and thermocouple experiments in a phantom skull were performed and confirmed minimal heating of adjacent structures including the skull base, cranial nerves, and cerebral vessels. For targeting, inclusion of no-pass regions through the petrous bone decreased collateral heating in the internal acoustic canal from 16.7°C without blocking to 5.7°C with blocking. Temperature at the REZ target decreased by 3.7°C with blocking. Similarly, for midcisternal targeting, collateral heating at the internal acoustic canal was improved from a 16.3°C increase to a 4.9°C increase. Blocking decreased the target temperature increase by 4.4°C for the same power settings. CONCLUSIONS: This study demonstrates focal heating of up to 18°C in a cadaveric trigeminal nerve at the REZ and along the cisternal segment with transcranial MRgFUS. Significant heating of the skull base and surrounding neural structures did not occur with implementation of no-pass regions. However, in vivo studies are necessary to confirm the safety and efficacy of this potentially new, noninvasive treatment.


Subject(s)
Magnetic Resonance Imaging/methods , Trigeminal Nerve/pathology , Trigeminal Nerve/surgery , Trigeminal Neuralgia/surgery , Ultrasonic Surgical Procedures/methods , Cadaver , Computer Simulation , Feasibility Studies , Hot Temperature , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Skull Base/pathology , Skull Base/surgery , Thermometers , Tomography, X-Ray Computed , Trigeminal Nerve/diagnostic imaging , Ultrasonic Surgical Procedures/instrumentation
15.
J Ther Ultrasound ; 1: 17, 2013.
Article in English | MEDLINE | ID: mdl-25512336

ABSTRACT

[This corrects the article on p. 3 in vol. 1, PMID: 24761224.].

16.
J Ther Ultrasound ; 1: 18, 2013.
Article in English | MEDLINE | ID: mdl-25512862

ABSTRACT

The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.

17.
J Ther Ultrasound ; 1: 22, 2013.
Article in English | MEDLINE | ID: mdl-25512864

ABSTRACT

BACKGROUND: The primary goal of this study was to investigate the relationship between increasing output power levels and clot fragmentation during high-intensity focused ultrasound (HIFU)-induced thrombolysis. METHODS: A HIFU headsystem, designed for brain applications in humans, was used for this project. A human calvarium was mounted inside the water-filled hemispheric transducer. Artificial thrombi were placed inside the skull and located at the natural focus point of the transducer. Clots were exposed to a range of acoustic output power levels from 0 to 400 W. The other HIFU operating parameters remained constant. To assess clot fragmentation, three filters of different mesh pore sizes were used. To assess sonothrombolysis efficacy, the clot weight loss was measured. RESULTS: No evidence of increasing clot fragmentation was found with increasing acoustic intensities in the majority of the study groups of less than 400 W. Increasing clot lysis could be observed with increasing acoustic output powers. CONCLUSION: Transcranial sonothrombolysis could be achieved in vitro within seconds in the absence of tPA and without producing relevant clot fragmentation, using acoustic output powers of <400 W.

18.
J Ther Ultrasound ; 1: 3, 2013.
Article in English | MEDLINE | ID: mdl-24761224

ABSTRACT

BACKGROUND: The purpose of this study was to describe targeting accuracy in functional neurosurgery using incisionless transcranial magnetic resonance (MR)-guided focused ultrasound technology. METHODS: MR examinations were performed before and 2 days after the ultrasound functional neurosurgical treatment to visualize the targets on T2-weighted images and determine their coordinates. Thirty consecutive targets were reconstructed: 18 were in the central lateral nucleus of the medial thalamus (central lateral thalamotomies against neurogenic pain), 1 in the centrum medianum thalamic nucleus (centrum medianum thalamotomy against essential tremor), 10 on the pallido-thalamic tract (pallido-thalamic tractotomies against Parkinson's disease), and 1 on the cerebello-thalamic tract (cerebello-thalamic tractotomy against essential tremor). We describe a method for reconstruction of the lesion coordinates on post-treatment MR images, which were compared with the desired atlas target coordinates. We also calculated the accuracy of the intra-operative target placement, thus allowing to determine the global, planning, and device accuracies. We also estimated the target lesion volume. RESULTS: We found mean absolute global targeting accuracies of 0.44 mm for the medio-lateral dimension (standard deviation 0.35 mm), 0.38 mm for the antero-posterior dimension (standard deviation 0.33 mm), and 0.66 mm for the dorso-ventral dimension (standard deviation 0.37 mm). Out of the 90 measured coordinates, 83 (92.2%) were inside the millimeter domain. The mean three-dimensional (3D) global accuracy was 0.99 mm (standard deviation 0.39 mm). The mean target volumes, reconstructed from surface measurements on 3D T1 series, were 68.5 mm(3) (standard deviation 39.7 mm(3)), and 68.9 mm(3) (standard deviation 40 mm(3)) using an ellipsoidal approximation. CONCLUSION: This study demonstrates a high accuracy of the MR-guided focused ultrasound technique. This high accuracy is due not only to the device qualities but also to the possibility for the operator to perform on-going real-time monitoring of the lesioning process. A precise method for determination of targeting accuracy is an essential component and basic requirement of the functional neurosurgical activity, allowing an on-going control of the performed therapeutic work indispensable for any target efficiency analysis and the maintenance of a low risk profile.

19.
Neurosurg Focus ; 32(1): E1, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22208894

ABSTRACT

OBJECT: Recent technological developments open the field of therapeutic application of focused ultrasound to the brain through the intact cranium. The goal of this study was to apply the new transcranial magnetic resonance imaging-guided focused ultrasound (tcMRgFUS) technology to perform noninvasive central lateral thalamotomies (CLTs) as a treatment for chronic neuropathic pain. METHODS: In 12 patients suffering from chronic therapy-resistant neuropathic pain, tcMRgFUS CLT was proposed. In 11 patients, precisely localized thermal ablations of 3-4 mm in diameter were produced in the posterior part of the central lateral thalamic nucleus at peak temperatures between 51 ° C and 64 ° C with the aid of real-time patient monitoring and MR imaging and MR thermometry guidance. The treated neuropathic pain syndromes had peripheral (5 patients) or central (6 patients) origins and covered all body parts (face, arm, leg, trunk, and hemibody). RESULTS: Patients experienced mean pain relief of 49% at the 3-month follow-up (9 patients) and 57% at the 1-year follow-up (8 patients). Mean improvement according to the visual analog scale amounted to 42% at 3 months and 41% at 1 year. Six patients experienced immediate and persisting somatosensory improvements. Somatosensory and vestibular clinical manifestations were always observed during sonication time because of ultrasound-based neuronal activation and/or initial therapeutic effects. Quantitative electroencephalography (EEG) showed a significant reduction in EEG spectral overactivities. Thermal ablation sites showed sharply delineated ellipsoidal thermolesions surrounded by short-lived vasogenic edema. Lesion reconstructions (18 lesions in 9 patients) demonstrated targeting precision within a millimeter for all 3 coordinates. There was 1 complication, a bleed in the target with ischemia in the motor thalamus, which led to the introduction of 2 safety measures, that is, the detection of a potential cavitation by a cavitation detector and the maintenance of sonication temperatures below 60 ° C. CONCLUSIONS: The authors assert that tcMRgFUS represents a noninvasive, precise, and radiation-free neurosurgical technique for the treatment of neuropathic pain. The procedure avoids mechanical brain tissue shift and eliminates the risk of infection. The possibility of applying sonication thermal spots free from trajectory restrictions should allow one to optimize target coverage. The real-time continuous MR imaging and MR thermometry monitoring of targeting accuracy and thermal effects are major factors in optimizing precision, safety, and efficacy in an outpatient context.


Subject(s)
Chronic Pain/surgery , Magnetic Resonance Imaging , Neuralgia/surgery , Surgery, Computer-Assisted , Thalamus/surgery , Ultrasonic Surgical Procedures/methods , Follow-Up Studies , Humans , Neurosurgical Procedures/methods , Pain Measurement
20.
Neurosurg Focus ; 32(1): E2, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22208895

ABSTRACT

The object of this study was to describe a method of measuring targeting accuracy in functional neurosurgery using MR imaging and the Stereotactic Atlas of the Human Thalamus and Basal Ganglia. This method should be useful for any functional procedure using these tools or similar ones, and is described here in the specific context of focused ultrasound surgery. The authors describe the atlas coordinate system used, the different relevant targeting and accuracy definitions, the tools used, the intraoperative target determination, the postoperative target reconstructions, and the calculation of the therapeutic lesion volume. The proposed method has been applied to the specific situation of measuring targeting accuracy in focused ultrasound functional neurosurgery. The authors found mean absolute global targeting accuracies between 0.54 and 0.72 mm (SDs between 0.34 and 0.42 mm), with 85% of measured coordinates within 1 mm. The proposed method may be particularly useful in the context of functional neurosurgical procedures implying therapeutic ablations, be they through radiofrequency, focused ultrasound, or any other technique. This method allows an ongoing control of the targeting precision, a basic requirement in any functional neurosurgical procedure.


Subject(s)
Brain Diseases/surgery , Surgery, Computer-Assisted , Ultrasonic Surgical Procedures/methods , Humans , Magnetic Resonance Imaging , Neurosurgical Procedures/methods , Sensitivity and Specificity , Stereotaxic Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...