Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 11(10): e0164094, 2016.
Article in English | MEDLINE | ID: mdl-27788145

ABSTRACT

The neurotoxicity of paraquat dichloride (PQ) was assessed in two inbred strains of 9- or 16-week old male C57BL/6 mice housed in two different laboratories and compared to the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PQ was administered by intraperitoneal injections; either once (20 mg/kg) or twice (10 mg/kg) weekly for 3 weeks, while MPTP-HCl was injected 4 times on a single day (20 mg/kg/dose). Brains were collected 8, 16, 24, 48, 96 or 168 hours after the last PQ treatment, and 48 or 168 hours after MPTP treatment. Dopamine neurons in the substantia nigra pars compacta (SNpc) were identified by antibodies to tyrosine hydroxylase (TH+) and microglia were identified using Iba-1 immunoreactivity. The total number of TH+ neurons and the number of resting and activated microglia in the SNpc at 168 hours after the last dose were estimated using model- or design-based stereology, with investigators blinded to treatment. In a further analysis, a pathologist, also blinded to treatment, evaluated the SNpc and/or striatum for loss of TH+ neurons (SNpc) or terminals (striatum), cell death (as indicated by amino cupric silver uptake, TUNEL and/or caspase 3 staining) and neuroinflammation (as indicated by Iba-1 and/or GFAP staining). PQ, administered either once or twice weekly to 9- or 16-week old mice from two suppliers, had no effect on the number of TH+ neurons or microglia in the SNpc, as assessed by two groups, each blinded to treatment, using different stereological methods. PQ did not induce neuronal cell loss or degeneration in the SNpc or striatum. Additionally, there was no evidence of apoptosis, microgliosis or astrogliosis. In MPTP-treated mice, the number of TH+ neurons in the SNpc was significantly decreased and the number of activated microglia increased. Histopathological assessment found degenerating neurons/terminals in the SNpc and striatum but no evidence of apoptotic cell death. MPTP activated microglia in the SNpc and increased the number of astrocytes in the SNpc and striatum.


Subject(s)
Dopaminergic Neurons/drug effects , MPTP Poisoning/pathology , Microglia/drug effects , Paraquat/toxicity , Pars Compacta/cytology , Animals , Body Weight/drug effects , Cell Count , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Eating/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/pathology , Pars Compacta/pathology , Survival Analysis , Tyrosine 3-Monooxygenase/metabolism
2.
Regul Toxicol Pharmacol ; 75: 81-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26683030

ABSTRACT

Male and female C57BL/6J mice were administered diquat dibromide (DQ∙Br2) in their diets at concentrations of 0 (control), 12.5 and 62.5 ppm for 13 weeks to assess the potential effects of DQ on the nigrostriatal dopaminergic system. Achieved dose levels at 62.5 ppm were 6.4 and 7.6 mg DQ (ion)/kg bw/day for males and females, respectively. A separate group of mice was administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) ip as a positive control. The comparative effects of DQ and MPTP on the substantia nigra pars compacta (SNpc) and/or striatum were assessed using neurochemical, neuropathological and stereological endpoints. Morphological and stereological assessments were performed by investigators who were "blinded" to dose group. DQ had no effect on striatal dopamine concentration or dopamine turnover. There was no evidence of neuronal degeneration, astrocytic or microglial activation, or a reduction in the number of tyrosine hydroxylase positive (TH(+)) neurons in the SNpc or neuronal processes in the striatum of DQ-treated mice. These results are consistent with the rapid clearance of DQ from the brain following a single dose of radiolabeled DQ. In contrast, MPTP-treated mice exhibited decreased striatal dopamine concentration, reduced numbers of TH(+) neurons in the SNpc, and neuropathological changes, including neuronal necrosis, as well as astrocytic and microglial activation in the striatum and SNpc.


Subject(s)
Brain/drug effects , Diquat/toxicity , Herbicides/toxicity , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Brain/cytology , Brain/metabolism , Diet , Diquat/blood , Diquat/pharmacokinetics , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/drug effects , Female , Herbicides/blood , Herbicides/pharmacokinetics , Homovanillic Acid/metabolism , Male , Mice, Inbred C57BL , Toxicity Tests, Subchronic
3.
Regul Toxicol Pharmacol ; 68(2): 250-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24389362

ABSTRACT

Several investigations have reported that mice administered paraquat dichloride (PQ·Cl2) by intraperitoneal injection exhibit a loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). In this study, male and female C57BL/6J mice were administered PQ·Cl2 in the diet at concentrations of 0 (control), 10, and 50ppm for a duration of 13weeks. A separate group of mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) during week 12 as positive controls to produce a loss of dopaminergic neurons in the SNpc. The comparative effects of PQ and MPTP on the SNpc and/or striatum were assessed using neurochemical, neuropathological, and stereological endpoints. Morphological and stereological assessments were performed by investigators 'blinded' to the origin of the tissue. Neither dose of PQ·Cl2 (10 or 50 ppm in the diet) caused a loss of striatal dopamine or dopamine metabolite concentrations in the brains of mice. Pathological assessments of the SNpc and striatum showed no evidence of neuronal degeneration or astrocytic/microglial activation. Furthermore, the number of tyrosine hydroxylase-positive (TH(+)) neurons in the SNpc was not reduced in PQ-treated mice. In contrast, MPTP caused a decrease in striatal dopamine concentration, a reduction in TH(+) neurons in the SNpc, and significant pathological changes including astrocytic and microglial activation in the striatum and SNpc. The MPTP-induced effects were greater in males than in females. It is concluded that 13weeks of continuous dietary exposure of C57BL/6J mice to 50ppm PQ·Cl2 (equivalent to 10.2 and 15.6mg PQ ion/kg body weight/day for males and females, respectively) does not result in the loss of, or damage to, dopaminergic neurons in the SNpc.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/drug effects , Herbicides/toxicity , Paraquat/toxicity , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Female , Herbicides/administration & dosage , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Paraquat/administration & dosage , Sex Factors , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
4.
Neurotoxicology ; 37: 1-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23523781

ABSTRACT

The pharmacokinetics and neurotoxicity of paraquat dichloride (PQ) were assessed following once weekly administration to C57BL/6J male mice by intraperitoneal injection for 1, 2 or 3 weeks at doses of 10, 15 or 25 mg/kg/week. Approximately 0.3% of the administered dose was taken up by the brain and was slowly eliminated, with a half-life of approximately 3 weeks. PQ did not alter the concentration of dopamine (DA), homovanillic acid (HVA) or 3,4-dihydroxyphenylacetic acid (DOPAC), or increase dopamine turnover in the striatum. There was inconsistent stereological evidence of a loss of DA neurons, as identified by chromogenic or fluorescent-tagged antibodies to tyrosine hydroxylase in the substantia nigra pars compacta (SNpc). There was no evidence that PQ induced neuronal degeneration in the SNpc or degenerating neuronal processes in the striatum, as indicated by the absence of uptake of silver stain or reduced immunolabeling of tyrosine-hydroxylase-positive (TH(+)) neurons. There was no evidence of apoptotic cell death, which was evaluated using TUNEL or caspase 3 assays. Microglia (IBA-1 immunoreactivity) and astrocytes (GFAP immunoreactivity) were not activated in PQ-treated mice 4, 8, 16, 24, 48, 96 or 168 h after 1, 2 or 3 doses of PQ. In contrast, mice dosed with the positive control substance, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 10mg/kg/dose×4 doses, 2 h apart), displayed significantly reduced DA and DOPAC concentrations and increased DA turnover in the striatum 7 days after dosing. The number of TH(+) neurons in the SNpc was reduced, and there were increased numbers of degenerating neurons and neuronal processes in the SNpc and striatum. MPTP-mediated cell death was not attributed to apoptosis. MPTP activated microglia and astrocytes within 4 h of the last dose, reaching a peak within 48 h. The microglial response ended by 96 h in the SNpc, but the astrocytic response continued through 168 h in the striatum. These results bring into question previous published stereological studies that report loss of TH(+) neurons in the SNpc of PQ-treated mice. This study also suggests that even if the reduction in TH(+) neurons reported by others occurs in PQ-treated mice, this apparent phenotypic change is unaccompanied by neuronal cell death or by modification of dopamine levels in the striatum.


Subject(s)
Basal Ganglia/drug effects , Herbicides/pharmacokinetics , Herbicides/toxicity , Paraquat/pharmacokinetics , Paraquat/toxicity , Substantia Nigra/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacokinetics , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Cell Death/drug effects , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dose-Response Relationship, Drug , Drug Administration Schedule , Half-Life , Herbicides/administration & dosage , Homovanillic Acid/metabolism , Injections, Intraperitoneal , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Nerve Degeneration , Paraquat/administration & dosage , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism
5.
J Hypertens ; 29(4): 724-31, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21358420

ABSTRACT

OBJECTIVE: To test the hypothesis that apelin protects against angiotensin II (Ang II)-induced cardiovascular fibrosis and vascular remodeling. METHODS AND RESULTS: Wild-type mice administered apelin or apelin along with Ang II exhibited less cardiovascular fibrosis and decreased plasminogen activator inhibitor type-1 (PAI-1) gene expression than mice receiving Ang II, N-nitro-L-arginine methyl ester (L-NAME), apelin plus L-NAME or apelin plus Ang II plus L-NAME. In-vitro analysis using a luciferase construct driven by 3.1 kb of the human PAI-1 promoter revealed that apelin blocked Ang II-mediated PAI-1 gene expression. Immunoblotting for phosphorylated myosin phosphatase subunit and myosin light chain revealed that apelin blocked Ang II activation of the Rho kinase pathway, which is associated with induction of PAI-1 gene expression by Ang II. In addition, treatment of human aortic smooth muscle cells with apelin reduced PAI-1 mRNA and protein production in the presence and absence of Ang II. Conversely, L-NAME treatment attenuated the downregulation of PAI-1 by apelin in cells. CONCLUSION: Apelin protects against cardiac fibrosis and vascular remodeling through direct regulation of PAI-1 gene expression. This protective effect is mediated through the synergistic inhibition of Ang II signaling and increased production of nitric oxide by apelin. Our data extend previous findings and provide new insight into the molecular mechanisms by which apelin elicits a cardioprotective effect.


Subject(s)
Angiotensin II/antagonists & inhibitors , Cardiovascular Diseases/prevention & control , Intercellular Signaling Peptides and Proteins/physiology , Plasminogen Activator Inhibitor 1/biosynthesis , Angiotensin II/adverse effects , Animals , Apelin , Cardiovascular Diseases/etiology , Fibrosis/prevention & control , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...