Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687463

ABSTRACT

Lateral flow immunoassays (LFIAs) are a simple diagnostic device used to detect targeted analytes. Wasted and unused rapid antigen lateral flow immunoassays represent mass waste that needs to be broken down and recycled into new material components. The aim of this study was to recover gold nanoparticles that are used as markers in lateral flow immunoassays. For this purpose, a dissolution process with aqua regia was utilised, where gold nanoparticles were released from the lateral flow immunoassay conjugate pads. The obtained solution was then concentrated further with gold chloride salt (HAuCl4) so that it could be used for the synthesis of new gold nanoparticles in the process of ultrasonic spray pyrolysis (USP). Various characterisation methods including scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and optical emission spectrometry with inductively coupled plasma were used during this study. The results of this study showed that the recovery of gold nanoparticles from lateral flow immunoassays is possible, and the newly synthesised gold nanoparticles represent the possibility for incorporation into new products.

2.
Materials (Basel) ; 16(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37512436

ABSTRACT

This study demonstrates the successful synthesis of Ni/Y2O3 nanocomposite particles through the application of ultrasound-assisted precipitation using the ultrasonic spray pyrolysis technique. They were collected in a water suspension with polyvinylpyrrolidone (PVP) as the stabiliser. The presence of the Y2O3 core and Ni shell was confirmed with transmission electron microscopy (TEM) and with electron diffraction. The TEM observations revealed the formation of round particles with an average diameter of 466 nm, while the lattice parameter on the Ni particle's surface was measured to be 0.343 nm. The Ni/Y2O3 nanocomposite particle suspensions were lyophilized, to obtain a dried material that was suitable for embedding into a polylactic acid (PLA) matrix. The resulting PLA/Ni/Y2O3 composite material was extruded, and the injection was moulded successfully. Flexural testing of PLA/Ni/Y2O3 showed a slight average decrease (8.55%) in flexural strength and a small decrease from 3.7 to 3.3% strain at the break, when compared to the base PLA. These findings demonstrate the potential for utilising Ni/Y2O3 nanocomposite particles in injection moulding applications and warrant further exploration of their properties and new applications in various fields.

3.
Pharm Res ; 39(9): 2005-2016, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35974124

ABSTRACT

INTRODUCTION: With an increased adoption of continuous manufacturing for pharmaceutical production, the ConsiGma® CTL25 wet granulation and tableting line has reached widespread use. In addition to the continuous granulation step, the semi-continuous six-segmented fluid bed dryer is a key unit in the line. The dryer is expected to have an even distribution of the inlet air between the six drying cells. However, process observations during manufacturing runs showed a repeatable pattern in drying time, which suggests a variability in the drying performance between the different cells of the dryer. The aim of this work is to understand the root-cause of this variability. MATERIALS AND METHODS: In a first step, the variability in the air temperature and air flow velocity between the dryer cells was measured on an empty dryer. In a second step, the experimental data were interpreted with the help of results from computational fluid dynamics (CFD) simulations to better understand the reasons for the observed variability. RESULTS: The CFD simulations were used to identify one cause of the measured difference in the air temperature, showing the impact of the air inlet design on the temperature distribution in the dryer. CONCLUSIONS: Although the simulation could not predict the exact temperature, the trend was similar to the experimental observations, demonstrating the added value of this type of simulation to guide process development, engineering decisions and troubleshoot equipment performance variability.


Subject(s)
Chemistry, Pharmaceutical , Desiccation , Chemistry, Pharmaceutical/methods , Computer Simulation , Desiccation/methods , Tablets , Temperature
4.
Gels ; 8(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35735712

ABSTRACT

In this work, we developed a numerical approach based on an experimental platform to determine the working conditions on a cryoplatform and to predict and evaluate the cryogenic printing of hydrogels. Although hydrogels have good biocompatibility, their material properties make it difficult to print them with high precision and shape fidelity. To overcome these problems, a cryogenic cooling platform was introduced to accelerate the physical stabilisation of each deposited layer during the printing process. By precisely controlling solidification (crystallisation), each printed material can withstand its own weight to maintain shape fidelity, and the porosity of the scaffolds can also be controlled more selectively. The thermophysical properties of gelatine hydrogels were investigated to gain a better understanding of the phase change upon freezing. The corresponding material properties and experimental observations of gelatine solidification served as the basis for developing a computational fluid model (CFD) to mimic the solidification of gelatine hydrogels using a cryoplatform at different process conditions and extruder speeds. The goal was to develop a tool simple enough to predict acceptable process conditions for printing gelatine hydrogels using a cryoplatform.

5.
Eur J Pharm Biopharm ; 175: 53-64, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35562001

ABSTRACT

Modeling lyophilization in a vial is frequently done on a single vial level. When setting up a numerical model, the main focus is on heat and mass transfer inside the lyophilizate, whereas the vapor dynamics in the headspace of the vial is taken into account simply through imposing the system pressure as a pressure boundary condition. The present paper offers a deeper insight into the interaction of the sublimated vapor flow and the corresponding vapor pressure conditions inside the headspace of a partially stoppered vial. This is achieved through a coupled numerical solution of the heat and mass transfer inside the product by means of a 0D model describing the frozen domain (ice) and the 3D fluid flow inside the vial geometry with the partially opened stopper, computed by means of Computational Fluid Dynamics. Due to low pressures, the slip flow regime within the continuum hypothesis has to be considered, leading to imposing velocity slip conditions at the solid walls. The 0D model is used for the computation of sublimation mass flow rate as well as heat transfer rate to the vial, with the results of the water vapor mass flow rate and the temperature communicated to the 3D CFD model as a new inlet boundary conditions for computation of compressible fluid flow dynamics inside the vial. The obtained CFD pressure field solution allows derivation of a pressure resistance model for a targeted vial stopper combination, which is then used in calculating the corresponding pressure drop in the headspace of the partially stoppered vial. The coupled CFD-0D model results are validated based on the results of dedicated experimental water runs on several vial and stopper geometries and show, that the vial geometry, but especially the installed stopper, alter the pressure field conditions inside the vial. The increased in-vial local vapor pressure values lead to a decrease of the mass flow rates and an increase of temperatures at the bottom of the product, which range from 0.6 K for the highest system pressure and up to 5.4 K for the lowest system pressure tested. The presented coupled model is suitable for the use in further studies of the impact of various vial forms as well as stoppers on the lyophilization dynamics in a vial.


Subject(s)
Gases , Hot Temperature , Freeze Drying/methods , Pressure , Temperature
6.
Materials (Basel) ; 15(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454550

ABSTRACT

The Ni/Y2O3 catalyst showed high catalytic activity. Based on this, the aim of this study was to create Ni/Y2O3 nanocomposites powder with two innovative technologies, Ultrasonic Spray Pyrolysis (USP) and lyophilisation. In the USP process, thermal decomposition of the generated aerosols in an N2/H2 reduction atmosphere caused a complete decomposition of the nickel (II) nitrate to elemental Ni, which became trapped on the formed Y2O3 nanoparticles. The Ni/Y2O3 nanocomposite particles were captured via gas washing in an aqueous solution of polyvinylpyrrolidone (PVP) in collection bottles. PVP was chosen for its ability to stabilise nano-suspensions and as an effective cryoprotectant. Consequently, there was no loss or agglomeration of Ni/Y2O3 nanocomposite material during the lyophilisation process. The Ni/Y2O3 nanocomposite powder was analysed using ICP-MS, SEM-EDX, and XPS, which showed the impact of different precursor concentrations on the final Ni/Y2O3 nanocomposite particle composition. In a final step, highly concentrated Ni/Y2O3 nanocomposite ink (Ni/Y2O3 > 0.140 g/mL) and test coatings from this ink were prepared by applying them on a white matte photo paper sheet. The reflection curve of the prepared Ni/Y2O3 nanocomposite coating showed a local maximum at 440 nm with a value of 39% reflection. Given that Ni is located on the surface of the Ni/Y2O3 nanocomposite in the elemental state and according to the identified properties, tests of the catalytic properties of this coating will be performed in the future.

7.
J Environ Manage ; 218: 200-208, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29680752

ABSTRACT

Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MWth waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type.


Subject(s)
Recycling , Wood , Air Pollutants , Carbon Monoxide , Hot Temperature , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...