Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 196: 110903, 2021 05.
Article in English | MEDLINE | ID: mdl-33636185

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Exposure to air pollution, specifically particulate matter of diameter ≤2.5 µm (PM2.5), is a well-established risk factor for CVD. However, the contribution of gaseous pollutant exposure to CVD risk is less clear. OBJECTIVE: To examine the vascular effects of exposure to individual volatile organic compounds (VOCs) and mixtures of VOCs. METHODS: We measured urinary metabolites of acrolein (CEMA and 3HPMA), 1,3-butadiene (DHBMA and MHBMA3), and crotonaldehyde (HPMMA) in 346 nonsmokers with varying levels of CVD risk. On the day of enrollment, we measured blood pressure (BP), reactive hyperemia index (RHI - a measure of endothelial function), and urinary levels of catecholamines and their metabolites. We used generalized linear models for evaluating the association between individual VOC metabolites and BP, RHI, and catecholamines, and we used Bayesian Kernel Machine Regression (BKMR) to assess exposure to VOC metabolite mixtures and BP. RESULTS: We found that the levels of 3HPMA were positively associated with systolic BP (0.98 mmHg per interquartile range (IQR) of 3HPMA; CI: 0.06, 1.91; P = 0.04). Stratified analysis revealed an increased association with systolic BP in Black participants despite lower levels of urinary 3HPMA. This association was independent of PM2.5 exposure and BP medications. BKMR analysis confirmed that 3HPMA was the major metabolite associated with higher BP in the presence of other metabolites. We also found that 3HPMA and DHBMA were associated with decreased endothelial function. For each IQR of 3HPMA or DHBMA, there was a -4.4% (CI: -7.2, -0.0; P = 0.03) and a -3.9% (CI: -9.4, -0.0; P = 0.04) difference in RHI, respectively. Although in the entire cohort the levels of several urinary VOC metabolites were weakly associated with urinary catecholamines and their metabolites, in Black participants, DHBMA levels showed strong associations with urinary norepinephrine and normetanephrine levels. DISCUSSION: Exposure to acrolein and 1,3-butadiene is associated with endothelial dysfunction and may contribute to elevated risk of hypertension in participants with increased sympathetic tone, particularly in Black individuals.


Subject(s)
Air Pollutants , Air Pollution , Volatile Organic Compounds , Acrolein , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Aldehydes , Bayes Theorem , Butadienes , Environmental Exposure/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , Particulate Matter/toxicity
2.
Sci Total Environ ; 707: 135435, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31865083

ABSTRACT

Residential proximity to vegetation and plants is associated with many health benefits, including reduced risk of cardiovascular disease, diabetes and mental stress. Although the mechanisms by which proximity to greenness affects health remain unclear, plants have been shown to remove particulate air pollution. However, the association between residential-area vegetation and exposure to volatile organic chemicals (VOCs) has not been investigated. We recruited a cohort of 213 non-smoking individuals and estimated peak, cumulative, and contemporaneous greenery using satellite-derived normalized difference vegetation index (NDVI) near their residence. We found that the urinary metabolites of exposure to VOCs - acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, propylene oxide were inversely associated (7-31% lower) with 0.1 higher peak NDVI values within 100 m radius of the participants' home. These associations were significant at radii ranging from 25 to 300 m. Strongest associations were observed within a 200 m radius, where VOC metabolites were 22% lower per 0.1 unit higher NDVI. Of the 18 measured urinary metabolites, 7 were positively associated with variation of greenness within a 200 m radius of homes. The percent of tree canopy and street trees around participants' residence were less strongly associated with metabolite levels. The associations between urinary VOC metabolites and residential NDVI values were stronger in winter than in summer, and in participants who were more educated, White, and those who lived close to areas of high traffic. These findings suggest high levels of residential greenness are associated with lower VOC exposure, particularly in winter.


Subject(s)
Cardiovascular Diseases , Volatile Organic Compounds/toxicity , Air Pollution , Cohort Studies , Humans , Plants
3.
Environ Res ; 180: 108890, 2020 01.
Article in English | MEDLINE | ID: mdl-31718786

ABSTRACT

Epidemiological evidence suggests that exposure to air pollution is a leading risk factor for cardiovascular disease (CVD). However, there is little direct evidence linking exposure to vascular dysfunction. We conducted a cross-sectional study of 100 participants, recruited from the University of Louisville Clinics. Endothelial function was assessed by calculating the reactive hyperemia index (RHI). Oxidative stress was indexed by measuring urinary levels of isoprostanes (n = 91). Inflammatory biomarkers were measured in the plasma (n = 80). Daily average PM2.5 levels were obtained from regional monitoring stations. Adjusted associations between PM2.5 levels and measured outcomes were tested using generalized linear models. The average age of participants was 48 years (44% male, 62% white); 52% had a diagnosis of hypertension, and 44% had type-2 diabetes. A 12.4% decrease in RHI was associated with 10 µg/m3 increase in PM2.5 (95% CI: 21.0, -2.7). The F-2 isoprostane metabolite showed a positive association of 28.4% (95% CI: 2.7, 60.3) per 10 µg/m3 increase in PM2.5. Positive associations were observed with angiopoietin 1 (17.4%; 95% CI: 2.8, 33.8), vascular endothelial growth factor (10.4%; 95% CI: 0.6, 21.0), placental growth factor (31.7%; 95% CI: 12.2, 54.5), intracellular adhesion molecule-1 (24.6%; 95% CI: 1.6, 52.8), and matrix metalloproteinase-9 (30.3%; 95% CI: 8.0, 57.5) per 10 µg/m3 increase in PM2.5. Additionally, a 10 µg/m3 increase in PM2.5 was associated with 15.9% decrease in vascular cell adhesion molecule-1 (95% CI: 28.3, -1.3). These findings suggest that exposure to PM2.5 is associated with impaired vascular function, which may result from oxidative stress and inflammation, thereby leading to a pro-atherogenic state.


Subject(s)
Air Pollutants , Air Pollution , Inflammation , Oxidative Stress , Particulate Matter , Air Pollutants/toxicity , Biomarkers , Cross-Sectional Studies , Environmental Exposure , Female , Humans , Male , Middle Aged , Particulate Matter/toxicity , Placenta Growth Factor , Vascular Endothelial Growth Factor A
4.
J Am Heart Assoc ; 7(24): e009117, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30561265

ABSTRACT

Background Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross-sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite-derived normalized difference vegetation index ( NDVI ) in zones with radii of 250 m and 1 km surrounding the participants' residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (-6.9%; 95% confidence interval, -11.5, -2.0/0.1 NDVI ) and F2-isoprostane (-9.0%; 95% confidence interval, -15.1, -2.5/0.1 NDVI ). We found stronger associations between NDVI and urinary epinephrine in women, those not on ß-blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0-15.6% decrease/0.1 NDVI ), whereas 2 were positively associated (37.6-45.8% increase/0.1 NDVI ) with contemporaneous NDVI . Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity.


Subject(s)
Cardiovascular Diseases/prevention & control , Plants , Residence Characteristics , Urbanization , Adult , Biomarkers/blood , Biomarkers/urine , Built Environment , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Cross-Sectional Studies , Endothelial Progenitor Cells/pathology , Epinephrine/urine , F2-Isoprostanes/urine , Female , Humans , Kentucky , Male , Middle Aged , Oxidative Stress , Protective Factors , Risk Assessment , Risk Factors , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
5.
PLoS One ; 13(10): e0205851, 2018.
Article in English | MEDLINE | ID: mdl-30321232

ABSTRACT

Circulating angiogenic cells (CACs) of various described phenotypes participate in the regeneration of the damaged endothelium, but the abundance of these cells is highly influenced by external cues including diabetes. It is not entirely clear which CAC populations are most reflective of endothelial function nor which are impacted by diabetes. To answer these questions, we enrolled a human cohort with variable CVD risk and determined relationships between stratified levels of CACs and indices of diabetes and vascular function. We also determined associations between CAC functional markers and diabetes and identified pro-angiogenic molecules which are impacted by diabetes. We found that subjects with low levels of CD34+/AC133+/CD31+/CD45dim cells (CAC-3) had a significantly higher incidence of diabetes (p = 0.004), higher HbA1c levels (p = 0.049) and higher CVD risk scores. Furthermore, there was an association between low CAC-3 levels and impaired vascular function (p = 0.023). These cells from diabetics had reduced levels of CXCR4 and VEGFR2, while diabetics had higher levels of certain cytokines and pro-angiogenic molecules. These results suggest that quantitative and functional defects of CD34+/AC133+/CD31+/CD45dim cells are associated with diabetes and vascular impairment and that this cell type may be a prognostic indicator of CVD and vascular dysfunction.


Subject(s)
Diabetes Mellitus, Type 2/blood , Endothelial Cells/cytology , Endothelium, Vascular/physiopathology , Stem Cells/cytology , Adult , Aged , Cardiovascular Diseases/diagnosis , Cytokines/metabolism , Diabetes Mellitus, Type 2/complications , Endothelium, Vascular/metabolism , Female , Glycated Hemoglobin/metabolism , Humans , Hyperglycemia/metabolism , Male , Middle Aged , Neovascularization, Pathologic , Obesity/complications , Obesity/pathology , Phenotype , Receptors, CXCR4/metabolism , Risk Factors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Young Adult
6.
Arterioscler Thromb Vasc Biol ; 35(11): 2468-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26293462

ABSTRACT

OBJECTIVES: Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. APPROACH AND RESULTS: In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31(+)/AC133(+), AC133(+), CD34(+)/AC133(+), and CD34(+)/45(dim)/AC133(+) cells) and positively associated with road segment distance (CD31(+)/AC133(+), AC133(+), and CD34(+)/AC133(+) cells), traffic intensity (CD31(+)/AC133(+) and AC133(+) cells), and distance-weighted traffic intensity (CD31(+)/34(+)/45(+)/AC133(+) cells). CONCLUSIONS: Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133(+). This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways.


Subject(s)
Antigens, CD/blood , Automobiles , Endothelial Progenitor Cells/drug effects , Environmental Exposure/adverse effects , Environmental Pollutants/adverse effects , Glycoproteins/blood , Inflammation Mediators/blood , Peptides/blood , Residence Characteristics , Vehicle Emissions , AC133 Antigen , Adult , Biomarkers/blood , Cell Count , Cross-Sectional Studies , Endothelial Progenitor Cells/immunology , Endothelial Progenitor Cells/metabolism , Female , Humans , Kentucky , Male , Middle Aged , Up-Regulation
7.
Am J Physiol Endocrinol Metab ; 307(3): E262-77, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24918202

ABSTRACT

Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇(O2), V̇(CO2), and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity.


Subject(s)
Abdominal Fat/metabolism , Adiposity , Autophagy , Energy Metabolism , Gene Expression Regulation, Enzymologic , Mitochondrial Dynamics , Obesity/metabolism , Abdominal Fat/pathology , Abdominal Fat/ultrastructure , Animals , Cell Size , Citrate (si)-Synthase/metabolism , Citric Acid Cycle , Diet, High-Fat/adverse effects , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Hypertrophy , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/pathology , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...