Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Q J Exp Psychol (Hove) ; : 17470218241256870, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38785308

ABSTRACT

Visual objects in the peripersonal space (PPS) are perceived faster than farther ones appearing in the extrapersonal space (EPS). This shows preferential processing for visual stimuli near our body. Such an advantage should favour visual perceptual learning occurring near, as compared with far from observers, but opposite evidence has been recently provided from online testing protocols, showing larger perceptual learning in the far space. Here, we ran two laboratory-based experiments investigating whether visual training in PPS and EPS has different effects. We used the horizontal Ponzo Illusion to create a lateralized depth perspective while participants completed a visual search task in which they reported whether or not a specific target object orientation (e.g., a triangle pointing upwards) was present among distractors. This task was completed before and after a training phase in either the (illusory) near or far space for 1 h. In Experiment 1, the near space was in the left hemispace, whereas in Experiment 2, it was in the right. Results showed that, in both experiments, participants were more accurate after training in the far space, whereas training in the near space led to either improvement in the far space (Experiment 1), or no change (Experiment 2). Moreover, we found a larger visual perceptual learning when stimuli were presented in the left compared with the right hemispace. Differently from visual processing, visual perceptual learning is more effective in the far space. We propose that depth is a key dimension that can be used to improve human visual learning.

2.
Psychon Bull Rev ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932577

ABSTRACT

Visual shape discrimination is faster for objects close to the body, in the peripersonal space (PPS), compared with objects far from the body. Visual processing enhancement in PPS occurs also when perceived depth is based on 2D pictorial cues. This advantage has been observed from relatively low-level (detection, size, orientation) to high-level visual features (face processing). While multisensory association also displays proximal advantages, whether PPS influences visual perceptual learning remains unclear. Here, we investigated whether perceptual learning effects vary according to the distance of visual stimuli (near or far) from the observer, illusorily induced by leveraging the Ponzo illusion. Participants performed a visual search task in which they reported whether a specific target object orientation (e.g., triangle pointing downward) was present among distractors. Performance was assessed before and after practicing the visual search task (30 minutes/day for 5 days) at either the close (near group) or far (far group) distance. Results showed that participants that performed the training in the near space did not improve. By contrast, participants that performed the training in the far space showed an improvement in the visual search task in both the far and near spaces. We suggest that such improvement following the far training is due to a greater deployment of attention in the far space, which could make the learning more effective and generalize across spaces.

3.
Cortex ; 128: 124-131, 2020 07.
Article in English | MEDLINE | ID: mdl-32335326

ABSTRACT

Spatial distortions in touch have been investigated since the 19th century. For example, two touches applied to the hand dorsum feel farther apart when aligned with the mediolateral axis (i.e., across the hand) than when aligned with the proximodistal axis (along the hand). Stimulations to our sensory receptors are usually dynamic, where spatial and temporal inputs closely interact to establish our percept. For example, physically bigger tactile stimuli are judged to last longer than smaller stimuli. Given such links between space and time in touch, we investigated whether there is a tactile anisotropy in temporal perception analogous to the anisotropy described above. In this case, the perceived duration between the onset of two touches should be larger when they are aligned with the mediolateral than with the proximodistal axis of the hand dorsum. To test this hypothesis, we asked participants to judge which of two tactile temporal sequences, having the same spatial separation along and across the dorsum, felt longer. A clear anisotropy of the temporal perception was observed: temporal intervals across the hand were perceived as longer than those along the hand. Consistent with the spatial anisotropy, the temporal anisotropy did not appear on the palm side of the hand, indicating that the temporal anisotropy was based on perceptual processes rather than top-down modulations such as attentional or decisional/response biases. Contrary to our predictions, however, we found no correlation between the magnitudes of the temporal and spatial anisotropies. Our results demonstrated a novel type of temporal illusion in touch, which is strikingly similar in nature to the previously reported spatial anisotropy. Thus, qualitatively similar distorted somatosensory representations appear to underlie both temporal and spatial processing of touch.


Subject(s)
Time Perception , Touch Perception , Anisotropy , Hand , Humans , Space Perception , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...