Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chest ; 165(2): 371-380, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37844797

ABSTRACT

BACKGROUND: Because chest CT scan has largely supplanted surgical lung biopsy for diagnosing most cases of interstitial lung disease (ILD), tools to standardize CT scan interpretation are urgently needed. RESEARCH QUESTION: Does a deep learning (DL)-based classifier for usual interstitial pneumonia (UIP) derived using CT scan features accurately discriminate radiologist-determined visual UIP? STUDY DESIGN AND METHODS: A retrospective cohort study was performed. Chest CT scans acquired in individuals with and without ILD were drawn from a variety of public and private data sources. Using radiologist-determined visual UIP as ground truth, a convolutional neural network was used to learn discrete CT scan features of UIP, with outputs used to predict the likelihood of UIP using a linear support vector machine. Test performance characteristics were assessed in an independent performance cohort and multicenter ILD clinical cohort. Transplant-free survival was compared between UIP classification approaches using the Kaplan-Meier estimator and Cox proportional hazards regression. RESULTS: A total of 2,907 chest CT scans were included in the training (n = 1,934), validation (n = 408), and performance (n = 565) data sets. The prevalence of radiologist-determined visual UIP was 12.4% and 37.1% in the performance and ILD clinical cohorts, respectively. The DL-based UIP classifier predicted visual UIP in the performance cohort with sensitivity and specificity of 93% and 86%, respectively, and in the multicenter ILD clinical cohort with 81% and 77%, respectively. DL-based and visual UIP classification similarly discriminated survival, and outcomes were consistent among cases with positive DL-based UIP classification irrespective of visual classification. INTERPRETATION: A DL-based classifier for UIP demonstrated good test performance across a wide range of UIP prevalence and similarly discriminated survival when compared with radiologist-determined UIP. This automated tool could efficiently screen for UIP in patients undergoing chest CT scan and identify a high-risk phenotype among those with known ILD.


Subject(s)
Deep Learning , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Retrospective Studies , Radiomics , Lung Diseases, Interstitial/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology
2.
IEEE Trans Image Process ; 24(12): 5942-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26513788

ABSTRACT

Segmentation of partially overlapping objects with a known shape is needed in an increasing amount of various machine vision applications. This paper presents a method for segmentation of clustered partially overlapping objects with a shape that can be approximated using an ellipse. The method utilizes silhouette images, which means that it requires only that the foreground (objects) and background can be distinguished from each other. The method starts with seedpoint extraction using bounded erosion and fast radial symmetry transform. Extracted seedpoints are then utilized to associate edge points to objects in order to create contour evidence. Finally, contours of the objects are estimated by fitting ellipses to the contour evidence. The experiments on one synthetic and two different real data sets showed that the proposed method outperforms two current state-of-art approaches in overlapping objects segmentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...