Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Asian Spine J ; 16(6): 831-838, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35378577

ABSTRACT

STUDY DESIGN: This is a finite element study. PURPOSE: This study is aimed to compare the biomechanical behaviors of three screw-based atlantoaxial fixation techniques. OVERVIEW OF LITERATURE: Screw-based constructs that are widely used to stabilize the atlantoaxial joint come with their own challenges in surgery. Clinical and in vitro studies have compared the effectiveness of screw-based constructs in joint fixation. Nevertheless, there is limited information regarding the biomechanical behavior of these constructs, such as the stresses and strains they experience. METHODS: A finite element model of the upper cervical spine was developed. A type II dens fracture was induced in the intact model to produce the injured model. The following three constructs were simulated on the intact and injured models: transarticular screw (C1- C2TA), lateral mass screw in C1 and pedicle screw in C2 (C1LM1-C2PD), and lateral mass screw in C1 and translaminar screw in C2 (C1LM1-C2TL). RESULTS: In the intact model, flexion-extension range of motion (ROM) was reduced by up to 99% with C11-C2TA and 98% with C1LM1-C2PD and C1LM1-C2TL. The lateral bending ROM in the intact model was reduced by 100%, 95%, and 75% with C11-C2TA, C1LM1-C2PD, and C1LM1-C2TL, respectively. The axial rotation ROM in the intact model was reduced by 99%, 98%, and 99% with C11-C2TA, C1LM1-C2PD, and C1LM1-C2TL, respectively. The largest maximum von Mises stress was predicted for C1LM1-C2TL (332 MPa) followed by C1LM1-C2PD (307 MPa) and C11-C2TA (133 MPa). Maximum stress was predicted to be at the lateral mass screw head of the C1LM1-C2TL construct. CONCLUSIONS: Our model indicates that the biomechanical stability of the atlantoaxial joint in lateral bending with translaminar screws is not as reliable as that with transarticular and pedicle screws. Translaminar screws experience large stresses that may lead to failure of the construct before the required bony fusion occurs.

2.
Bioengineering (Basel) ; 9(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35049725

ABSTRACT

Cervical fusion has been a standard procedure for treating abnormalities associated with the cervical spine. However, the reliability of anterior cervical discectomy and fusion (ACDF) has become arguable due to its adverse effects on the biomechanics of adjacent segments. One of the drawbacks associated with ACDF is adjacent segment degeneration (ASD), which has served as the base for the development of dynamic stabilization systems (DSS) and total disc replacement (TDR) devices for cervical spine. However, the hybrid surgical technique has also gained popularity recently, but its effect on the biomechanics of cervical spine is not well researched. Thus, the objective of this FE study was to draw a comparison among single-level, bi-level, and hybrid surgery with dynamic cervical implants (DCIs) with traditional fusion. Reductions in the range of motion (ROM) for all the implanted models were observed for all the motions except extension, compared to for the intact model. The maximum increase in the ROM of 42% was observed at segments C5-C6 in the hybrid DCI model. The maximum increase in the adjacent segment's ROM of 8.7% was observed in the multilevel fusion model. The maximum von Mises stress in the implant was highest for the multilevel DCI model. Our study also showed that the shape of the DCI permitted flexion/extension relatively more compared to lateral bending and axial rotation.

3.
Proc Inst Mech Eng H ; 230(7): 700-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27107032

ABSTRACT

Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted.


Subject(s)
Cervical Vertebrae/physiology , Adult , Biomechanical Phenomena , Cervical Vertebrae/anatomy & histology , Cervical Vertebrae/diagnostic imaging , Computer Simulation , Finite Element Analysis , Humans , Male , Models, Anatomic , Models, Biological , Range of Motion, Articular/physiology , Rotation , Tomography, X-Ray Computed
4.
J Neurosurg Spine ; 23(2): 200-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25932601

ABSTRACT

OBJECT The authors evaluated the biomechanical effects of an interspinous process (ISP) device on kinematics and load sharing at the implanted and adjacent segments. METHODS A 3D finite-element (FE) model of the lumbar spine (L1-5) was developed and validated through comparison with published in vitro study data. Specifically, validation was achieved by a flexible (load-control) approach in 3 main planes under a pure moment of 10 Nm and a compressive follower load of 400 N. The ISP device was inserted between the L-3 and L-4 processes. Intact and implanted cases were simulated using the hybrid protocol in all motion directions. The resultant motion, facet load, and intradiscal pressure after implantation were investigated at the index and adjacent levels. In addition, stress at the bone-implant interface was predicted. RESULTS The hybrid approach, shown to be appropriate for adjacent-level investigations, predicted that the ISP device would decrease the range of motion, facet load, and intradiscal pressure at the index level relative to the corresponding values for the intact spine in extension. Specifically, the intradiscal pressure induced after implantation at adjacent segments increased by 39.7% and by 6.6% at L2-3 and L4-5, respectively. Similarly, facet loads at adjacent segments after implantation increased up to 60% relative to the loads in the intact case. Further, the stress at the bone-implant interface increased significantly. The influence of the ISP device on load sharing parameters in motion directions other than extension was negligible. CONCLUSIONS Although ISP devices apply a distraction force on the processes and prevent further extension of the index segment, their implantation may cause changes in biomechanical parameters such as facet load, intradiscal pressure, and range of motion at adjacent levels in extension.


Subject(s)
Biomechanical Phenomena/physiology , Intervertebral Disc/surgery , Lumbar Vertebrae/surgery , Lumbosacral Region/surgery , Prostheses and Implants , Adult , Humans , Male , Motion , Range of Motion, Articular , Spinal Fusion/methods
5.
Turk Neurosurg ; 24(3): 312-8, 2014.
Article in English | MEDLINE | ID: mdl-24848166

ABSTRACT

The finite element model has been used as an effective tool in human spine biomechanics. Biomechanical finite element models have provided basic insights into the workings of the cervical spine system. Advancements in numerical methods during the last decade have enabled researchers to propose more accurate models of the cervical spine. The new finite element model of the cervical spine considers the accurate representation of each tissue regarding the geometry and material. The aim of this paper is to address the new advancements in the finite element model of the human cervical spine. The procedures for creating a finite element model are introduced, including geometric construction, material-property assignment, boundary conditions and validation. The most recent and published finite element models of the cervical spine are reviewed.


Subject(s)
Cervical Vertebrae/anatomy & histology , Models, Anatomic , Biomechanical Phenomena , Cervical Vertebrae/physiology , Finite Element Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...