Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(25): eadj3268, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896607

ABSTRACT

Chloroplasts are the powerhouse of the plant cell, and their activity must be matched to plant growth to avoid photooxidative damage. We have identified a posttranslational mechanism linking the eukaryotic target of rapamycin (TOR) kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origins that regulates chloroplast activity and photosynthesis in particular. We find that RelA SpoT homolog 3 (RSH3), a nuclear-encoded enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific amino-terminal region which is phosphorylated in a TOR-dependent manner. Down-regulating TOR activity causes a rapid increase in ppGpp synthesis in RSH3 overexpressors and reduces photosynthetic capacity in an RSH-dependent manner in wild-type plants. The TOR-RSH3 signaling axis therefore regulates the equilibrium between chloroplast activity and plant growth, setting a precedent for the regulation of organellar function by TOR.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Photosynthesis , Signal Transduction , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Phosphorylation , Protein Processing, Post-Translational , Gene Expression Regulation, Plant , Guanosine Tetraphosphate/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases
2.
PLoS Pathog ; 19(11): e1011417, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37983287

ABSTRACT

Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potyvirus , Arabidopsis/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Potyvirus/physiology , Plants, Genetically Modified/metabolism , Plant Diseases/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Eukaryotic Initiation Factor-4G/metabolism
3.
Mol Plant Pathol ; 22(3): 334-347, 2021 03.
Article in English | MEDLINE | ID: mdl-33377260

ABSTRACT

The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana-potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.


Subject(s)
Arabidopsis/genetics , Disease Resistance/genetics , Eukaryotic Initiation Factor-4E/metabolism , Plant Diseases/immunology , Potyvirus/pathogenicity , Alleles , Arabidopsis/immunology , Arabidopsis/virology , Eukaryotic Initiation Factor-4E/genetics , Gene Knockout Techniques , Loss of Function Mutation , Models, Biological , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
4.
Plant Biotechnol J ; 17(9): 1736-1750, 2019 09.
Article in English | MEDLINE | ID: mdl-30784179

ABSTRACT

In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR-nCas9-cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single-point mutation through C-to-G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome-editing technologies offers a feasible solution for engineering transgene-free genetic resistance in plants, even across species barriers.


Subject(s)
CRISPR-Cas Systems , Disease Resistance/genetics , Eukaryotic Initiation Factor-4E/genetics , Gene Editing , Pisum sativum/genetics , Plant Diseases/genetics , Potyvirus/pathogenicity , Alleles , Arabidopsis/genetics , Arabidopsis/virology , Pisum sativum/virology , Plant Diseases/virology , Plant Proteins/genetics , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...