Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 602(7): 1405-1426, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457332

ABSTRACT

Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.


Subject(s)
Thalamic Nuclei , Thalamus , Rats , Animals , Thalamus/physiology , Thalamic Nuclei/physiology , Neurons/physiology , Pain , Face , Somatosensory Cortex/physiology
2.
STAR Protoc ; 5(2): 102972, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38502685

ABSTRACT

Studies on sensory information processing typically focus on whisker-related tactile information, overlooking the question of how sensory inputs from other body areas are processed at cortical levels. Here, we present a protocol for stimulating specific rodent limb receptive fields while recording in vivo somatosensory-evoked activity. We describe steps for localizing cortical-hindlimb coordinates using acute peripheral stimulation, electrode placement, and the application of electrical stimulation. This protocol overcomes the challenge of inducing a reproducible and consistent stimulation of specific limbs. For complete details on the use and execution of this protocol, please refer to Miguel-Quesada et al.1.


Subject(s)
Electric Stimulation , Evoked Potentials, Somatosensory , Somatosensory Cortex , Animals , Evoked Potentials, Somatosensory/physiology , Electric Stimulation/methods , Somatosensory Cortex/physiology , Rats , Mice , Extremities/physiology , Rodentia , Hindlimb/physiology , Vibrissae/physiology
3.
Exp Neurol ; 369: 114504, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37591355

ABSTRACT

The complete or partial damage of ascending somatosensory pathways produced by a spinal cord injury triggers changes in the somatosensory cortex consisting in a functional expansion of activity from intact cortical regions towards deafferented ones, a process known as cortical reorganization. However, it is still unclear whether cortical reorganization depends on the severity of the spinal cord damage or if a spinal cord injury always leads to a similar cortical reorganization process in the somatosensory cortex. To answer these open questions in the field, we obtained longitudinal somatosensory evoked responses from bilateral hindlimb and forelimb cortex from animals with chronic full-transection or contusive spinal cord injury at thoracic level (T9-T10) to induce sensory deprivation of hindlimb cortex while preserving intact the forelimb cortex. Electrophysiological recordings from the four locations were obtained before lesion and weekly for up to 4 weeks. Our results show that cortical reorganization depends on the type of spinal cord injury, which tends to be more bilateral in full transection while is more unilateral in the model of contusive spinal cord injury. Moreover, in full transection of spinal cord, the deafferented and intact cortex exhibited similar increments of somatosensory evoked responses in both models of spinal cord injury - a feature observed in about 80% of subjects. The other 20% were unaffected by the injury indicating that cortical reorganization does not undergo in all subjects. In addition, we demonstrated an increased probability of triggered up-states in animals with spinal cord injury. This data indicates increased cortical excitability that could be proposed as a new feature of cortical reorganization. Finally, decreased levels of GABA marker GAD67 across cortical layers were only found in those animals with increased somatosensory evoked responses, but not in the unaffected population. In conclusion, cortical reorganization depends on the types of spinal cord injuries, and suggest that the phenomenon is strongly determined by cortical circuits. Moreover, changes in GABAergic transmission at the deprived cortex may be considered one of the mechanisms underlying the process of cortical reorganization and increased excitability.

4.
Cell Rep ; 42(8): 112950, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37543946

ABSTRACT

Cortical neuron-astrocyte communication in response to peripheral sensory stimulation occurs in a topographic-, frequency-, and intensity-dependent manner. However, the contribution of this functional interaction to the processing of sensory inputs and consequent behavior remains unclear. We investigate the role of astrocytes in sensory information processing at circuit and behavioral levels by monitoring and manipulating astrocytic activity in vivo. We show that astrocytes control the dynamic range of the cortical network activity, optimizing its responsiveness to incoming sensory inputs. The astrocytic modulation of sensory processing contributes to setting the detection threshold for tactile and thermal behavior responses. The mechanism of such astrocytic control is mediated through modulation of inhibitory transmission to adjust the gain and sensitivity of responding networks. These results uncover a role for astrocytes in maintaining the cortical network activity in an optimal range to control behavior associated with specific sensory modalities.


Subject(s)
Astrocytes , Somatosensory Cortex , Astrocytes/physiology , Neural Pathways , Calcium/metabolism , Neurons/physiology , Electrophysiology , Animals , Mice , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Olfactory Perception , Touch Perception
5.
J Physiol ; 599(20): 4643-4669, 2021 10.
Article in English | MEDLINE | ID: mdl-34418097

ABSTRACT

Cortical areas have the capacity of large-scale reorganization following sensory deafferentation. However, it remains unclear whether this phenomenon is a unique process that homogeneously affects the entire deprived cortical region or whether it is susceptible to changes depending on neuronal networks across distinct cortical layers. Here, we studied how the local circuitry within each layer of the deafferented cortex forms the basis for neuroplastic changes after immediate thoracic spinal cord injury (SCI) in anaesthetized rats. In vivo electrophysiological recordings from deafferented hindlimb somatosensory cortex showed that SCI induces layer-specific changes mediating evoked and spontaneous activity. In supragranular layer 2/3, SCI increased gamma oscillations and the ability of these neurons to initiate up-states during spontaneous activity, suggesting an altered corticocortical network and/or intrinsic properties that may serve to maintain the excitability of the cortical column after deafferentation. On the other hand, SCI enhanced the infragranular layers' ability to integrate evoked sensory inputs leading to increased and faster neuronal responses. Delayed evoked response onsets were also observed in layer 5/6, suggesting alterations in thalamocortical connectivity. Altogether, our data indicate that SCI immediately modifies the local circuitry within the deafferented cortex allowing supragranular layers to better integrate spontaneous corticocortical information, thus modifying column excitability, and infragranular layers to better integrate evoked sensory inputs to preserve subcortical outputs. These layer-specific neuronal changes may guide the long-term alterations in neuronal excitability and plasticity associated with the rearrangements of somatosensory networks and the appearance of central sensory pathologies usually associated with spinal cord injury. KEY POINTS: Sensory stimulation of forelimb produces cortical evoked responses in the somatosensory hindlimb cortex in a layer-dependent manner. Spinal cord injury favours the input statistics of corticocortical connections between intact and deafferented cortices. After spinal cord injury supragranular layers exhibit better integration of spontaneous corticocortical information while infragranular layers exhibit better integration of evoked sensory stimulation. Cortical reorganization is a layer-specific phenomenon.


Subject(s)
Sensory Deprivation , Spinal Cord Injuries , Animals , Neuronal Plasticity , Neurons , Rats , Somatosensory Cortex
SELECTION OF CITATIONS
SEARCH DETAIL
...