Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399058

ABSTRACT

Gold nanohole arrays, hybrid metal/dielectric metasurfaces composed of periodically arranged air holes in a thick gold film, exhibit versatile support for both localized and propagating surface plasmons. Leveraging their capabilities, particularly in surface plasmon resonance-oriented applications, demands precise optical tuning. In this study, a customized particle swarm optimization algorithm, implemented in Ansys Lumerical FDTD, was employed to optically tune gold nanohole arrays treated as bidimensional gratings following the Bragg condition. Both square and triangular array dispositions were considered. Convergence and evolution of the particle swarm optimization algorithm were studied, and a mathematical model was developed to interpret its outcomes.

2.
Opt Lett ; 48(19): 5017-5020, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773374

ABSTRACT

We study the role of topological singularities like Bound States in a Continuum (BICs) or Circularly Polarized States (CPSs) in determining ellipticity of the far-field polarization in dielectric metasurfaces. Using finite-difference time-domain as well as rigorous coupled-wave analysis simulations, we determine the behavior of the Stokes parameter S3 in the whole k space above the light cone, with special regard to the region close to the singularities. Moreover, we clarify the relation between the topological singularities and the circular dichroism in reflectivity.

3.
Nanotechnology ; 32(33)2021 May 25.
Article in English | MEDLINE | ID: mdl-33971637

ABSTRACT

Recent advances in the nanofabrication and modeling of metasurfaces have shown the potential of these systems in providing unprecedented control over light-matter interactions at the nanoscale, enabling immediate and tangible improvement of features and specifications of photonic devices that are becoming always more crucial in enhancing everyday life quality. In this work, we theoretically demonstrate that metasurfaces made of periodic and non-periodic deterministic assemblies of vertically aligned semiconductor nanowires can be engineered to display a tailored effective optical response and provide a suitable route to realize advanced systems with controlled photonic properties particularly interesting for sensing applications. The metasurfaces investigated in this paper correspond to nanowire arrays that can be experimentally realized exploiting nanolithography and bottom-up nanowire growth methods: the combination of these techniques allow to finely control the position and the physical properties of each individual nanowire in complex arrays. By resorting to numerical simulations, we address the near- and far-field behavior of a nanowire ensemble and we show that the controlled design and arrangement of the nanowires on the substrate may introduce unprecedented oscillations of light reflectance, yielding a metasurface which displays an electromagnetic behavior with great potential for sensing. Finite-difference time-domain numerical simulations are carried out to tailor the nanostructure parameters and systematically engineer the optical response in the VIS-NIR spectral range. By exploiting our computational-methods we set-up a complete procedure to design and test metasurfaces able to behave as functional sensors. These results are especially encouraging in the perspective of developing arrays of epitaxially grown semiconductor nanowires, where the suggested design can be easily implemented during the nanostructure growth, opening the way to fully engineered nanowire-based optical metamaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...