Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 1056365, 2022.
Article in English | MEDLINE | ID: mdl-36545310

ABSTRACT

While anti-PD-1 and anti-PD-L1 [anti-PD-(L)1] monotherapies are effective treatments for many types of cancer, high variability in patient responses is observed in clinical trials. Understanding the sources of response variability can help prospectively identify potential responsive patient populations. Preclinical data may offer insights to this point and, in combination with modeling, may be predictive of sources of variability and their impact on efficacy. Herein, a quantitative systems pharmacology (QSP) model of anti-PD-(L)1 was developed to account for the known pharmacokinetic properties of anti-PD-(L)1 antibodies, their impact on CD8+ T cell activation and influx into the tumor microenvironment, and subsequent anti-tumor effects in CT26 tumor syngeneic mouse model. The QSP model was sufficient to describe the variability inherent in the anti-tumor responses post anti-PD-(L)1 treatments. Local sensitivity analysis identified tumor cell proliferation rate, PD-1 expression on CD8+ T cells, PD-L1 expression on tumor cells, and the binding affinity of PD-1:PD-L1 as strong influencers of tumor growth. It also suggested that treatment-mediated tumor growth inhibition is sensitive to T cell properties including the CD8+ T cell proliferation half-life, CD8+ T cell half-life, cytotoxic T-lymphocyte (CTL)-mediated tumor cell killing rate, and maximum rate of CD8+ T cell influx into the tumor microenvironment. Each of these parameters alone could not predict anti-PD-(L)1 treatment response but they could shift an individual mouse's treatment response when perturbed. The presented preclinical QSP modeling framework provides a path to incorporate potential sources of response variability in human translation modeling of anti-PD-(L)1.

2.
J Pharmacokinet Pharmacodyn ; 41(2): 127-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24578187

ABSTRACT

Human Hexokinase IV, or glucokinase (GK), is a regulator of glucose concentrations in the body. It plays a key role in pancreatic insulin secretion as well as glucose biotransformation in the liver, making it a potentially viable target for treatment of Type 2 diabetes. Allosteric activators of GK have been shown to decrease blood glucose concentrations in both animals and humans. Here, the development of a mathematical model is presented that describes glucose modulation in an ob/ob mouse model via administration of a potent GK activator, with the goal of projecting a human efficacious dose and plasma exposure. The model accounts for the allosteric interaction between GK, the activator, and glucose using a modified Hill function. Based on model simulations using data from the ob/ob mouse and in vitro studies, human projections of glucose response to the GK activator are presented, along with dose and regimen predictions to maintain clinically significant decreases in blood glucose in a Type 2 diabetic patient. This effort serves as a basis to build a detailed mechanistic understanding of GK and its role as a therapeutic target for Type 2 diabetes, and it highlights the benefits of using such an approach in a drug discovery setting.


Subject(s)
Azetidines/pharmacology , Benzofurans/pharmacology , Diabetes Mellitus, Type 2/metabolism , Enzyme Activators/pharmacokinetics , Glucokinase/metabolism , Hypoglycemic Agents/pharmacokinetics , Models, Biological , Animals , Azetidines/pharmacokinetics , Azetidines/therapeutic use , Benzofurans/pharmacokinetics , Benzofurans/therapeutic use , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Male , Mice , Mice, Obese
3.
PLoS One ; 7(9): e44359, 2012.
Article in English | MEDLINE | ID: mdl-22970204

ABSTRACT

A systems-level mathematical model is presented that describes the effects of inhibiting the enzyme 5α-reductase (5aR) on the ventral prostate of the adult male rat under chronic administration of the 5aR inhibitor, finasteride. 5aR is essential for androgen regulation in males, both in normal conditions and disease states. The hormone kinetics and downstream effects on reproductive organs associated with perturbing androgen regulation are complex and not necessarily intuitive. Inhibition of 5aR decreases the metabolism of testosterone (T) to the potent androgen 5α-dihydrotestosterone (DHT). This results in decreased cell proliferation, fluid production and 5aR expression as well as increased apoptosis in the ventral prostate. These regulatory changes collectively result in decreased prostate size and function, which can be beneficial to men suffering from benign prostatic hyperplasia (BPH) and could play a role in prostate cancer. There are two distinct isoforms of 5aR in male humans and rats, and thus developing a 5aR inhibitor is a challenging pursuit. Several inhibitors are on the market for treatment of BPH, including finasteride and dutasteride. In this effort, comparisons of simulated vs. experimental T and DHT levels and prostate size are depicted, demonstrating the model accurately described an approximate 77% decrease in prostate size and nearly complete depletion of prostatic DHT following 21 days of daily finasteride dosing in rats. This implies T alone is not capable of maintaining a normal prostate size. Further model analysis suggests the possibility of alternative dosing strategies resulting in similar or greater effects on prostate size, due to complex kinetics between T, DHT and gene occupancy. With appropriate scaling and parameterization for humans, this model provides a multiscale modeling platform for drug discovery teams to test and generate hypotheses about drugging strategies for indications like BPH and prostate cancer, such as compound binding properties, dosing regimens, and target validation.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Cholestenone 5 alpha-Reductase/metabolism , Models, Biological , Prostate/drug effects , Prostate/enzymology , 5-alpha Reductase Inhibitors/administration & dosage , Animals , Calibration , Dihydrotestosterone/metabolism , Dose-Response Relationship, Drug , Finasteride/administration & dosage , Finasteride/pharmacokinetics , Finasteride/pharmacology , Gene Expression Regulation/drug effects , Humans , Kinetics , Liver/drug effects , Liver/metabolism , Male , Organ Size/drug effects , Organ Size/genetics , Prostate/metabolism , Rats , Testosterone/metabolism
4.
Bull Math Biol ; 69(1): 93-117, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17024552

ABSTRACT

Genistein is an endocrine-active compound (EAC) found in soy products. It has been linked to beneficial effects such as mammary tumor growth suppression and adverse endocrine-related effects such as reduced birth weight in rats and humans. In its conjugated form, genistein is excreted in the bile, which is a significant factor in its pharmacokinetics. Experimental data suggest that genistein induces a concentration-dependent suppression of biliary excretion. In this article, we describe a physiologically based pharmacokinetic (PBPK) model that focuses on biliary excretion with the goal of accurately simulating the observed suppression. The mathematical model is a system of nonlinear differential equations with state-dependent delay to describe biliary excretion. The model was analyzed to examine local existence and uniqueness of a solution to the equations. Furthermore, unknown parameters were estimated, and the mathematical model was compared against published experimental data.


Subject(s)
Genistein/pharmacokinetics , Models, Biological , Animals , Bile/metabolism , Biliary Tract/drug effects , Biliary Tract/metabolism , Genistein/pharmacology , Nonlinear Dynamics , Rats
5.
Am J Physiol Endocrinol Metab ; 291(5): E952-64, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16757547

ABSTRACT

The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. Understanding these regulatory mechanisms is important for assessing the reproductive effects of environmental and pharmaceutical androgenic and antiandrogenic compounds. A mathematical model for the dynamics of androgenic synthesis, transport, metabolism, and regulation of the adult rodent ventral prostate was developed on the basis of a model by Barton and Anderson (1997). The model describes the systemic and local kinetics of testosterone (T), 5alpha-dihydrotestosterone (DHT), and luteinizing hormone (LH), with metabolism of T to DHT by 5alpha-reductase in liver and prostate. Also included are feedback loops for the positive regulation of T synthesis by LH and negative regulation of LH by T and DHT. The model simulates maintenance of the prostate as a function of hormone concentrations and androgen receptor (AR)-mediated signal transduction. The regulatory processes involved in prostate size and function include cell proliferation, apoptosis, fluid production, and 5alpha-reductase activity. Each process is controlled through the occupancy of a representative gene by androgen-AR dimers. The model simulates prostate dynamics for intact, castrated, and intravenous T-injected rats. After calibration, the model accurately captures the castration-induced regression of the prostate compared with experimental data that show that the prostate regresses to approximately 17 and 5% of its intact weight at 14 and 30 days postcastration, respectively. The model also accurately predicts serum T and AR levels following castration compared with data. This model provides a framework for quantifying the kinetics and effects of environmental and pharmaceutical endocrine active compounds on the prostate.


Subject(s)
Androgens/blood , Models, Biological , Orchiectomy , Prostate/physiology , Testosterone/blood , Androgens/pharmacology , Animals , Dihydrotestosterone/blood , Hypothalamo-Hypophyseal System/physiology , Injections, Intravenous , Luteinizing Hormone/metabolism , Male , Organ Size , Pituitary Gland/physiology , Prostate/anatomy & histology , Rats , Reproducibility of Results , Testosterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...