Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Oral Sci ; 126(1): 24-32, 2018 02.
Article in English | MEDLINE | ID: mdl-29114927

ABSTRACT

Non-syndromic tooth agenesis (NSTA) is the most common developmental anomaly in humans. Several studies have been conducted on dental agenesis and numerous genes have been identified. However, the pathogenic mechanisms responsible for NSTA are not clearly understood. We studied a group of 28 patients with sporadic NSTA and nine patients with a family history of tooth agenesis. We focused on four genes - paired box 9 (PAX9), Wnt family member 10A (WNT10A), msh homeobox 1 (MSX1), and axin 2 (AXIN2) - using direct Sanger sequencing of the exons and intron-exon boundaries. The most prevalent variants identified in PAX9 and AXIN2 genes were analyzed using the chi-square test. The sequencing results revealed a number of variants in the AXIN2 gene, including one novel missense mutation in one patient with agenesis of a single second premolar. We also identified one variant in the AXIN2 gene as being a putative risk factor for tooth agenesis. Only one missense mutation was identified in the WNT10A gene and this mutation was found in two patients. Interestingly, WNT10A is reported as the most prevalent gene mutated in the European population with NSTA.


Subject(s)
Anodontia/genetics , Axin Protein/genetics , MSX1 Transcription Factor/genetics , Mutation , PAX9 Transcription Factor/genetics , Wnt Proteins/genetics , Anodontia/diagnostic imaging , Female , Humans , Male , Mutation, Missense , Phenotype , Polymorphism, Genetic , Radiography, Panoramic
2.
Arch Oral Biol ; 71: 110-116, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27491081

ABSTRACT

BACKGROUND: Dental agenesis is the most common developmental anomaly in man and may present either as an isolated trait or as part of a syndrome, such as ectodermal dysplasia. Until now, the underlying molecular pathogenic mechanisms responsible for dental agenesis are still largely unknown. Several genetic and molecular studies have demonstrated that at least 300 genes are involved in tooth formation and development, coding for specific transcriptional factors, receptors or growth factors that are expressed at specific developmental stages. Dental agenesis in this respect is believed to result from altered expression of one or more of these factors during initiation and early morphogenesis of the tooth germ, and the first actors identified were MSX1 and PAX9. DESIGN: In this study, we focalized on a Tunisian family with a non-syndromic autosomal dominant form of tooth agenesis. In order to screen for the eventual genetic cause of dental agenesis in this family we sequenced 4 genes; PAX9, WNT10A, MSX1 and AXIN2 using Sanger sequencing. RESULTS: Direct Screening analysis of PAX9 gene, revealed a novel mutation p.Asp200Serfs*13. It consists of a duplication of 5 basepairs leading to a codon stop 13 position downstream. This novel mutation was found in all affected family members. CONCLUSIONS: In this report, we present the first genetic study of a Tunisian family with a non-syndromic autosomal dominant form of tooth agenesis, in which we identified in PAX9 gene a novel mutation. It most likely results in nonsense mediated RNA decay and haploinsifficiency that reduce the transactivation capacity of PAX9.


Subject(s)
Anodontia/genetics , Mutation/genetics , PAX9 Transcription Factor/genetics , Anodontia/diagnostic imaging , Cephalometry , Female , Humans , Male , Pedigree , Phenotype , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...