Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37514409

ABSTRACT

Despite being widely used in tailings treatment, polyacrylamide continues to face performance challenges. In this study, two commercial polyacrylamides with different molecular weights were used to flocculate iron ore tailings and their performance was compared with two polymers designed to treat oil sand tailings: poly(vinylbenzyl)trimethylammonium chloride and partially hydrolyzed poly(methyl acrylate) grafted onto ethylene-propylene-diene copolymer backbones. The polyacrylamide with the highest molecular weight performed better than the one with the lowest molecular weight, but its efficiency was still considerably lower than what would be desired for good solid-liquid separation. The new polymer flocculants performed better than the commercially available polyacrylamides but retained high amounts of water in the sediments. This comparison shows that polymers other than polyacrylamide may be used to treat iron ore tailings.

2.
ACS Appl Mater Interfaces ; 5(19): 9803-8, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24063561

ABSTRACT

A device composed of a poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel layer sandwiched between two thin Au layers (all on a glass support) was used as a novel platform for controlled and triggered small molecule delivery. Tris (4-(dimethylamino)phenyl)methylium chloride (Crystal Violet, CV), which is positively charged, was loaded into the microgel layer of the device and released in a pH dependent fashion, at a rate that could be controlled by the thickness of the Au layer coating the microgels. Specifically, at pH 6.5 (above the pKa for AAc) the microgels were negatively charged, promoting the strong interaction between the CV and the microgels, hindering its release from the layer. At pH 3.0 the microgel's AAc groups are protonated making the microgel mostly neutral, allowing CV to be released from the microgel layer at a rate that depends on the thickness of the Au covering the microgels. Specifically, devices with thin Au overlayers on the microgel layer allow CV to be released from the device faster than devices with thick Au overlayers. The ability to tune the release rate with pH and Au layer thickness is advantageous for developing implantable devices that are capable of releasing small molecule drugs in a triggered and controlled fashion.

SELECTION OF CITATIONS
SEARCH DETAIL
...