Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Fiziol Zh (1994) ; 52(3): 15-24, 2006.
Article in English | MEDLINE | ID: mdl-16909752

ABSTRACT

A role of proteasomal proteolysis in the pathogenesis of ischemia-reperfusion is being actively studied. To evaluate the participation of the proteasome in postconditioning phenomenon, we used primary culture of neonatal cardiomyocytes. 30 minutes of anoxia followed by 60 minutes of reoxygenation was undergone. Postconditioning was modeled by 3 cycles of 1-minute reoxygenation followed by 1-minute anoxia, respectively. Clasto-lactacystin b-lactone, a specific proteasome inhibitor, in the dose that does not cause cell death (2.5 mM) was added to the culture medium just before the cycles of postconditioning. Percentages of living, necrotic, and apoptotic cells were determined by staining with bisBenzimide and propidium iodide. Autophagy was demonstrated by staining vacuolar structures with monodansyl cadaverine. Proteasomal activity was determined by cleavage intensity of specific fluorogenic substrates. Trypsin-like, chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were decreased after anoxia. Reoxygenation led to an increase in trypsin-like and chymotrypsin-like activities comparing to anoxia, but these parameters never reached the control levels. PGPH activity was restored up to the initial level. Postconditioning increased numbers of living cells and decreased that of necrotic, apoptotic and autophagic cells. Paradoxically, it was established, that proteasome inhibitors prevented the necrotic and apoptotic cell death of cardiomyocytes in anoxia-reoxygenation, but in the same concentration abolished the effects of postconditioning. The data obtained permit to suppose that proteasome inhibitors can be used for pharmacological postconditioning.


Subject(s)
Apoptosis/drug effects , Ischemic Preconditioning, Myocardial , Myocytes, Cardiac/drug effects , Oxygen Consumption/drug effects , Proteasome Inhibitors , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cells, Cultured , Lactones/pharmacology , Leupeptins/pharmacology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis , Protease Inhibitors/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...