Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 305: 114390, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34999446

ABSTRACT

This work presents the state-of-the-art review of investigations related to the adsorption process, adsorption models, experimental adsorption results, and influencing factors, considering the main contaminants produced by underground coal gasification (UCG) technology as adsorbates and the various rocks and soils surrounding the UCG cavity as adsorbents. Based on the literature reviewed, it is found that claystone, coal, coal char, shale, and clay materials present a good prospect for effective phenol adsorption; coal, coal char, shale, and clay materials can also remove benzene and some heavy metals from aqueous solutions. However, their performance varies under the effect of the influencing factors, such as the initial concentration of adsorbates in solution, the pH of the solution, the temperature and contact time controlled in the adsorption process, and the adsorbent dosage. A preliminary assessment of the potential of rocks and soils to act as natural buffers in UCG application is provided. The impact of UCG process on the adsorption of contaminants on the surrounding strata together with the major challenges and future perspectives are highlighted and outlined, to identify knowledge deficiencies regarding the retardation of UCG contaminants using the natural buffers. The prospect of surrounding strata as natural buffers can benefit the site selection, design, and commercialization of UCG.


Subject(s)
Coal , Soil , Adsorption , Phenol , Phenols
2.
Environ Sci Pollut Res Int ; 29(2): 2203-2213, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34365600

ABSTRACT

This paper deals with the characterisation of inorganic constitutions generated at various operating conditions in the context of underground coal gasification (UCG). The ex situ small-scale experiments were conducted with coal specimens of different rank, from the South Wales Coalfield, Wales, UK, and Upper Silesian Coal Basin, Poland. The experiments were conducted at various gaseous oxidant ratios (water: oxygen = 1:1 and 2:1), pressures (20 bar and 36 bar) and temperatures (650°C, 750°C and 850°C). Increasing the amount of water in the oxidants proportionately decreased the cationic elements but increased the concentrations of anionic species. The temperature played minor impact, while the high-pressure experiments at temperature optimum to produce methane-rich syngas (750°C) showed significant reduction in cationic element generation. However, both coal specimens produced high amount of anionic species (F, Cl, SO4 and NO3). The "Hard" bituminous coal from Poland produced less gasification residues and condensates than the South Wales anthracitic coal due to its higher reactivity. The inorganic composition found in the solid residue was used in the theoretical calculation to predict the dissolved product concentrations when the solid residue interacts with deep coal seam water in the event of UCG cavity flooding. It was evident from the solubility products of the Cr, Ni and Zn that changes in the groundwater geochemistry occur; hence, their transportation in the subsurface must be studied further.


Subject(s)
Coal , Gases , Poland , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...