Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501340

ABSTRACT

An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.

2.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955778

ABSTRACT

Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We studied the presence and extent of DNA rearrangements at the junction of plant and transgenic DNA in five lines of Arabidopsis thaliana suspension cells carrying a site-specific integration of target genes. Two types of templates were used to obtain knock-ins, differing in the presence or absence of flanking DNA homologous to the target site in the genome. For the targeted insertion, we selected the region of the histone H3.3 gene with a very high constitutive level of expression. Our studies showed that all five obtained knock-in cell lines have rearrangements at the borders of the integrated sequence. Significant rearrangements, about 100 or more bp from the side of the right flank, were found in all five plant lines. Reorganizations from the left flank at more than 17 bp were found in three out of five lines. The fact that rearrangements were detected for both variants of the knock-in template (with and without flanks) indicates that the presence of flanks does not affect the occurrence of mutations.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , DNA , Gene Rearrangement , Plants/genetics , Plasmids
3.
Plants (Basel) ; 12(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616166

ABSTRACT

Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.

4.
Cells ; 10(8)2021 08 19.
Article in English | MEDLINE | ID: mdl-34440906

ABSTRACT

Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We investigated the possibility of obtaining a suspension cell culture of Arabidopsis thaliana carrying a site-specific integration of a target gene encoding modified human interferon (dIFN) using endonuclease Cas9. For the targeted insertion, we selected the region of the histone H3.3 gene (HTR5) with a high constitutive level of expression. Our results indicated that Cas9-induced DNA integration occurred with the highest frequency with the construction with donor DNA surrounded by homology arms and Cas9 endonuclease recognition sites. Among the monoclones of the four cell lines with knock-in studied, there is high heterogeneity in the level of expression and accumulation of the target protein. The accumulation of dIFN protein in cell lines with targeted insertions into the target region of the HTR5 gene does not statistically differ from the level of accumulation of dIFN protein in the group of lines with random integration of the transgene. However, one among the monoclonal lines with knock-in has a dIFN accumulation level above 2% of TSP, which is very high.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Histones/metabolism , Cell Culture Techniques
5.
Mol Biol Rep ; 46(6): 5735-5743, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31392536

ABSTRACT

Targeted genome editing using CRISPR/Cas9 is a promising technology successfully verified in various plant species; however, it has hardly been used in plant cell suspension cultures. Here, we describe a successful knockout of a green fluorescent protein (gfp) reporter gene in Arabidopsis cell culture. We transformed seven transgenic suspension cell lines carrying one to three gfp gene copies with a binary vector containing genes coding for Cas9 and guide RNAs targeting the gfp gene. We detected the site-specific mutations by restriction analysis of a gfp amplicon. DNA sequencing of the PCR products confirmed high diversity of insertion-deletion mutations in the cell lines after the editing. We also analyzed gfp mRNA expression by real-time PCR and observed a decrease in gfp transcription after the target site modification. We can conclude that the CRISPR/Cas9 system can be successfully used for introducing site-specific mutations into the genome of cultured suspension cells of Arabidopsis.


Subject(s)
Arabidopsis , CRISPR-Cas Systems/genetics , Gene Silencing , Green Fluorescent Proteins/genetics , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Culture Techniques/methods , Cells, Cultured , DNA, Plant/genetics , Genes, Reporter/genetics , Green Fluorescent Proteins/metabolism , Mutagenesis, Site-Directed/methods , Mutation/genetics , Sequence Analysis, DNA
6.
Acta Microbiol Immunol Hung ; : 1-20, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29471696

ABSTRACT

Development of effective vaccine candidates against tuberculosis is currently the most important challenge in the prevention of this disease since the BCG vaccine fails to guarantee a lifelong protection, while any other approved vaccine with better efficiency is still absent. The protective effect of the recombinant fusion protein ESAT6-CFP10-dIFN produced in a prokaryotic expression system (Escherichia coli) has been assessed in a guinea pig model of acute tuberculosis. The tested antigen comprises the Mycobacterium tuberculosis (Mtb) proteins ESAT6 and CFP10 as well as modified human γ-interferon (dIFN) for boosting the immune response. Double intradermal immunization of animals with the tested fusion protein (2 × 0.5 µg) induces a protective effect against subsequent Mtb infection. The immunized animals do not develop the symptoms of acute tuberculosis and their body weight gain was five times more as compared with the non-immunized-infected animals. The animal group immunized with this dose of antigen displays the minimum morphological changes in the internal organs and insignificant inflammatory lesions in the liver tissue, which complies with a decrease in the bacterial load in the spleen and average Mtb counts in macrophages.

7.
Acta Microbiol Immunol Hung ; 65(1): 39-58, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29243495

ABSTRACT

Development of effective vaccine candidates against tuberculosis (TB) is currently the most important challenge in the prevention of this disease since the BCG vaccine fails to guarantee a lifelong protection, while any other approved vaccine with better efficiency is still absent. The protective effect of the recombinant fusion protein CFP10-ESAT6-dIFN produced in a prokaryotic expression system (Escherichia coli) has been assessed in a guinea pig model of acute TB. The tested antigen comprises the Mycobacterium tuberculosis (Mtb) proteins ESAT6 and CFP10 as well as modified human γ-interferon (dIFN) for boosting the immune response. Double intradermal immunization of guinea pigs with the tested fusion protein (2 × 0.5 µg) induces a protective effect against subsequent Mtb infection. The immunized guinea pigs do not develop the symptoms of acute TB and their body weight gain was five times more as compared with the non-immunized infected guinea pigs. The animal group immunized with this dose of antigen displays the minimum morphological changes in the internal organs and insignificant inflammatory lesions in the liver tissue, which complies with a decrease in the bacterial load in the spleen and average Mtb counts in macrophages.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Animals , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/genetics , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Guinea Pigs , Humans , Immunization , Interferon-gamma/administration & dosage , Interferon-gamma/genetics , Interferon-gamma/immunology , Mycobacterium tuberculosis/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/genetics
8.
Biomed Res Int ; 2015: 417565, 2015.
Article in English | MEDLINE | ID: mdl-25949997

ABSTRACT

Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.


Subject(s)
Antigens, Bacterial/immunology , Daucus carota/genetics , Plants, Genetically Modified/genetics , Recombinant Proteins/biosynthesis , Animals , Antigens, Bacterial/genetics , Daucus carota/immunology , Daucus carota/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immunity, Innate/genetics , Mice , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Tuberculosis/immunology , Tuberculosis/microbiology
9.
Biomed Res Int ; 2013: 316304, 2013.
Article in English | MEDLINE | ID: mdl-24455687

ABSTRACT

Two lines of transgenic carrot plants producing Mycobacterium tuberculosis proteins (ESAT6 and CFP10) have been constructed. The target proteins are present in carrot storage roots at a level not less than 0.056% of the total storage protein (TSP) for ESAT6 and 0.002% of TSP for CFP10. As has been shown, oral immunization of mice induces both the cell-mediated and humoral immunities. These data suggest that the proteins in question are appropriate as a candidate edible vaccine against tuberculosis.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Plants, Genetically Modified/genetics , Tuberculosis/immunology , Administration, Oral , Animals , Antigens, Bacterial/biosynthesis , Bacterial Proteins/biosynthesis , Bacterial Proteins/immunology , Daucus carota/genetics , Mice , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/immunology , Tuberculosis/prevention & control , Vaccines, Edible/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...