Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 15: 279-296, 2024.
Article in English | MEDLINE | ID: mdl-38476324

ABSTRACT

Raman spectroscopy is a widely used technique to characterize nanomaterials because of its convenience, non-destructiveness, and sensitivity to materials change. The primary purpose of this work is to determine via Raman spectroscopy the average thickness of MoS2 thin films synthesized by direct liquid injection pulsed-pressure chemical vapor deposition (DLI-PP-CVD). Such samples are constituted of nanoflakes (with a lateral size of typically 50 nm, i.e., well below the laser spot size), with possibly a distribution of thicknesses and twist angles between stacked layers. As an essential preliminary, we first reassess the applicability of different Raman criteria to determine the thicknesses (or layer number, N) of MoS2 flakes from measurements performed on reference samples, namely well-characterized mechanically exfoliated or standard chemical vapor deposition MoS2 large flakes deposited on 90 ± 6 nm SiO2 on Si substrates. Then, we discuss the applicability of the same criteria for significantly different DLI-PP-CVD MoS2 samples with average thicknesses ranging from sub-monolayer up to three layers. Finally, an original procedure based on the measurement of the intensity of the layer breathing modes is proposed to evaluate the surface coverage for each N (i.e., the ratio between the surface covered by exactly N layers and the total surface) in DLI-PP-CVD MoS2 samples.

2.
Nanoscale Adv ; 5(6): 1681-1690, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36926560

ABSTRACT

Hybrid van der Waals heterostructures made of 2D materials and organic molecules exploit the high sensitivity of 2D materials to all interfacial modifications and the inherent versatility of the organic compounds. In this study, we are interested in the quinoidal zwitterion/MoS2 hybrid system in which organic crystals are grown by epitaxy on the MoS2 surface and reorganize in another polymorph after thermal annealing. By means of field-effect transistor measurements recorded in situ all along the process, atomic force microscopy and density functional theory calculations we demonstrate that the charge transfer between quinoidal zwitterions and MoS2 strongly depends on the conformation of the molecular film. Remarkably, both the field effect mobility and the current modulation depth of the transistors remain unchanged which opens up promising prospects for efficient devices based on this hybrid system. We also show that MoS2 transistors enable fast and accurate detection of structural modifications that occur during phases transitions of the organic layer. This work highlights that MoS2 transistors are remarkable tools for on-chip detection of molecular events occurring at the nanoscale, which paves the way for the investigation of other dynamical systems.

3.
Phys Chem Chem Phys ; 19(24): 15833-15841, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28585655

ABSTRACT

Silicon carbide (SiC) sublimation is the most promising option to achieve transfer-free graphene at the wafer-scale. We investigated the initial growth stages from the buffer layer to monolayer graphene on SiC(0001) as a function of annealing temperature at low argon pressure (10 mbar). A buffer layer, fully covering the SiC substrate, forms when the substrate is annealed at 1600 °C. Graphene formation starts from the step edges of the SiC substrate at higher temperature (1700 °C). The spatial homogeneity of the monolayer graphene was observed at 1750 °C, as characterized by Raman spectroscopy and magneto-transport. Raman spectroscopy mapping indicated an AG-graphene/AG-HOPG ratio of around 3.3%, which is very close to the experimental value reported for a graphene monolayer. Transport measurements from room temperature down to 1.7 K indicated slightly p-doped samples (p ≃ 1010 cm-2) and confirmed both continuity and thickness of the monolayer graphene film. Successive growth processes have confirmed the reproducibility and homogeneity of these monolayer films.

4.
Nat Commun ; 4: 2542, 2013.
Article in English | MEDLINE | ID: mdl-24071824

ABSTRACT

The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

5.
ACS Nano ; 7(1): 165-73, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23194077

ABSTRACT

We report in situ Raman scattering experiments on single-layer graphene (SLG) and Bernal bilayer graphene (BLG) during exposure to rubidium vapor. The G- and 2D-band evolutions with doping time are presented and analyzed. On SLG, the extended doping range scanned (up to about 10(14) electrons/cm(2)) allows the observation of three regimes in the evolution of the G-band frequency: a continuous upshift followed by a plateau and a downshift. Overall the measured evolution is interpreted as the signature of the competition between dynamic and adiabatic effects upon n-doping. Comparison of the obtained results with theoretical predictions indicates however that a substrate pinning effect occurs and inhibits charge-induced lattice expansion of SLG. At low doping, a direct link between electrostatic gating and Rb doping results is presented. For BLG, the added electrons are shown to be first confined in the top layer, but the system evolves with time toward a more symmetric repartition of the added electrons in both layers. The results obtained on BLG also confirm that the slope of the phonon dispersion close to the K point tends to be slightly reduced at low doping but suggest the occurrence of an unexpected increase of the phonon dispersion slope at higher electron concentration.


Subject(s)
Graphite/chemistry , Materials Testing/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Rubidium/chemistry , Gases/chemistry , Particle Size , Spectrum Analysis, Raman , Surface Properties
6.
J Phys Chem B ; 110(20): 9759-63, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16706422

ABSTRACT

We demonstrate the use of sequential catalytic growth to encapsulate iron, nickel-iron, and iron-cobalt phosphide catalyst nanoparticles periodically along the entire lengths of carbon nanotubes. Investigations by local electron spectroscopies and electron diffraction reveal the compositions and crystal structures of the encapsulated particles. Significantly, high spatial resolution magnetic characterization using magnetic force microscopy and off-axis electron holography demonstrates that encapsulated iron-cobalt phosphide nanoparticles are ferromagnetic at room temperature, in accordance with the properties of bulk metal phosphides of the same structure and composition.

SELECTION OF CITATIONS
SEARCH DETAIL