Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 48(9): 4835-43, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24666343

ABSTRACT

Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5× lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality.


Subject(s)
Poaceae/chemistry , Volatile Organic Compounds/analysis , Aerosols , Mass Spectrometry , Molecular Weight , Reference Standards , Spectroscopy, Near-Infrared
2.
Anal Chem ; 83(7): 2409-15, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21275431

ABSTRACT

Organic molecules are a significant and highly varied component of atmospheric aerosols. Measurement of aerosol composition and improvements in our understanding of the complex chemistry involved in their formation and aging are being aided by innovations in soft ionization aerosol MS. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

3.
Anal Chem ; 82(19): 7915-23, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20795651

ABSTRACT

A new method, near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS), is described for the real time analysis of organic aerosols at atmospherically relevant mass loadings. Use of a single NIR laser pulse to vaporize and ionize particle components deposited on an aluminum probe results in minimal fragmentation to produce exclusively intact pseudomolecular anions at [M-H](-). Limits of detection (total particulate mass sampled) for oxidized compounds of relevance to atmospheric primary and secondary organic aerosol range from 89 fg for pinic acid to 8.8 pg for cholesterol. NIR-LDI-AMS was used in conjunction with the University of Vermont Environmental Chamber to study secondary organic aerosol (SOA) formation from ozonolysis of limonene at total aerosol mass loadings ranging from 3.2 to 25.0 µg m(-3) and with a time resolution of several minutes. NIR-LDI-AMS permitted direct delineation between gas-phase, homogeneous SOA formation and subsequent heterogeneous aerosol processing by ozone.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Lasers , Organic Chemicals/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Aluminum/chemistry , Cholesterol/chemistry , Cyclohexenes/chemistry , Limonene , Ozone/chemistry , Terpenes/chemistry
4.
J Phys Chem A ; 112(51): 13275-81, 2008 Dec 25.
Article in English | MEDLINE | ID: mdl-19053540

ABSTRACT

The heterogeneous processing of atmospheric aerosols by reaction with nitrogen oxides results in the formation of particulate and adsorbed nitrates. The water content of these hygroscopic nitrate aerosols and consequently the nitrate ion concentration depend on relative humidity, which can impact the physicochemical properties of these aerosols. This report focuses on the 310 nm photolysis of aqueous sodium and calcium nitrate solutions at pH 4 over a wide concentration range of nitrate ion concentrations representative of atmospheric aerosols. In particular, the quantum yield (phi) of nitrite formation was measured and found to significantly decrease at high concentrations of nitrate for Ca(NO(3))(2). In particular, phi for Ca(NO(3))(2) was found to have a maximum value of (7.8 +/- 0.1) x 10(-3) for nitrate ion solution concentrations near one molal, with the smallest quantum yield for the highest concentration solution above 14 m nitrate ion, phi = (2.3 +/- 2.0) x 10(-4). The effect of the addition of the radical scavenger, formate, on the 310 nm photolysis of these solutions was also investigated and found to increase phi by a factor of 2 or more for both sodium and calcium nitrate solutions. In the presence of formate, Ca(NO(3))(2) solutions again showed a significant decrease in phi with increasing NO(3)(-) concentration: phi = (1.4 +/- 0.1) x 10(-2) at (1.0 +/- 0.1) x 10(-2) m NO(3)(-) compared to phi = (4.2 +/- 0.3) x 10(-3) at 14.9 +/- 0.1 m NO(3)(-). This decrease in phi was not observed in NaNO(3) solutions. The change in electronic structure, as evident by the more pronounced shift of the n-pi* absorption band away from actinic wavelengths with increasing concentration for Ca(NO(3))(2) compared to NaNO(3), is most likely the origin of the greater decrease in phi for Ca(NO(3))(2) compared to NaNO(3) at elevated NO(3)(-) concentrations. The role of nitrate photochemistry in atmospheric aerosols and the atmospheric implications of these concentration dependent quantum yields are discussed.

5.
Rapid Commun Mass Spectrom ; 18(21): 2517-21, 2004.
Article in English | MEDLINE | ID: mdl-15468105

ABSTRACT

Photoelectron resonance capture ionization (PERCI) is a soft and sensitive ionization method, based on the attachment of low-energy (<1 eV) photoelectrons to organic analyte molecules. PERCI has been developed in our laboratory for the real-time analysis of organic particles by mass spectrometry, and is employed here to monitor the heterogeneous reaction of ozone with oleic acid. Simplified identification of the reaction products is possible as a result of the soft nature of PERCI, giving predominantly the [M--H](-) ions. The major particle-phase products are identified as: 1-nonanal, nonanoic acid, 9-oxononanoic acid, and azelaic acid, consistent with proposed mechanisms. New insight into this well-studied heterogeneous reaction is gained as additional minor particle-phase products, consistent with the Criegee mechanism, are readily detected.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Oleic Acid/analysis , Organic Chemicals/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Electrons , Magnetic Resonance Spectroscopy/instrumentation , Oleic Acid/chemistry , Organic Chemicals/chemistry , Ozone/chemistry , Photochemistry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
6.
J Chem Phys ; 120(6): 2708-18, 2004 Feb 08.
Article in English | MEDLINE | ID: mdl-15268415

ABSTRACT

The utility of recording Raman spectroscopy under liquid nitrogen, a technique we call Raman under nitrogen (RUN), is demonstrated for ferrocene, uranocene, and thorocene. Using RUN, low-temperature (liquid nitrogen cooled) Raman spectra for these compounds exhibit higher resolution than previous studies, and new vibrational features are reported. The first Raman spectra of crystalline uranocene at 77 K are reported using excitation from argon (5145 A) and krypton (6764 A) ion lasers. The spectra obtained showed bands corresponding to vibrational transitions at 212, 236, 259, 379, 753, 897, 1500, and 3042 cm(-1), assigned to ring-metal-ring stretching, ring-metal tilting, out-of-plane CCC bending, in-plane CCC bending, ring-breathing, C-H bending, CC stretching and CH stretching, respectively. The assigned vibrational bands are compared to those of uranocene in THF, (COT)2-, and thorocene. All vibrational frequencies of the ligands, except the 259 cm(-1) out-of-plane CCC bending mode, were found to increase upon coordination. A broad, polarizable band centered about approximately 460 cm(-1) was also observed. The 460 cm(-1) band is greatly enhanced relative to the vibrational Raman transitions with excitations from the krypton ion laser, which is indicative of an electronic resonance Raman process as has been shown previously. The electronic resonance Raman band is observed to split into three distinct bands at 450, 461, and 474 cm(-1) with 6764 A excitation. Relativistic density functional theory is used to provide theoretical interpretations of the measured spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...