Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 220: 1512-1522, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36126810

ABSTRACT

Kenaf (Hibiscus cannabinus L.) seed is a valuable protein source that could be used to prepare protein hydrolysates with antihypertensive properties. However, the potential of using kenaf seeds for health food and pharmaceutical applications has not been fully exploited. Thus, the aim of this study was to identify and characterise the Angiotensin-I-Converting Enzyme (ACE) inhibitory peptides derived from the optimized hydrolysis conditions of kenaf seed protein hydrolysates (KSPH). The optimum hydrolysis conditions determined by response surface methodology (RSM) were as follows: temperature 65 °C, pH 6.5, hydrolysis time 2.25 h, and enzyme/substrate (E/S) ratio of 0.03 (w/w). Under these conditions, the degree of hydrolysis (DH) was 55.28 % and ACE inhibitory activity was 75.51 %. Also, the low molecular weight peptide fractions, <2 kilodalton (kDa) and 2-5 kDa showed the highest ACE-inhibitory activity (82.27 % and 83.69 %, respectively). The 2-5 kDa fraction by Quadrupole-Time-of-Flight Liquid Chromatography-Mass Spectrometry (QTOF LC - MS) revealed the abundance of six peptides, LYWSYLYN, ALFYWVS, LLLHAL, AKSCVVFP, INPPSTTN, and WTIPTPS. Kinetic studies showed that peptide LYWSYLYN possessed the highest Michaelis constant (Km), maximum velocity (Vmax) values and the lowest inhibitor constant (Ki) values, suggesting of its superior ACE inhibitory activity compared to other peptides.


Subject(s)
Hibiscus , Protein Hydrolysates , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensins , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Hydrolysis , Kinetics , Molecular Docking Simulation , Peptides/chemistry , Peptidyl-Dipeptidase A/metabolism , Pharmaceutical Preparations , Protein Hydrolysates/chemistry , Seeds/metabolism
2.
Foods ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316941

ABSTRACT

The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.

3.
PLoS One ; 10(6): e0126874, 2015.
Article in English | MEDLINE | ID: mdl-26035710

ABSTRACT

INTRODUCTION: Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets. METHODOLOGY: Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted. RESULTS AND DISCUSSION: Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent concentration of plasma up to 24 hours. CONCLUSION: In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy.


Subject(s)
Delayed-Action Preparations/pharmacokinetics , Imatinib Mesylate/chemistry , Imatinib Mesylate/pharmacokinetics , Tablets/chemistry , Acrylic Resins/chemistry , Alginates/chemistry , Animals , Delayed-Action Preparations/chemistry , Drug Evaluation, Preclinical/methods , Drug Stability , Female , Glucuronic Acid/chemistry , Hardness , Hexuronic Acids/chemistry , Hypromellose Derivatives/chemistry , Imatinib Mesylate/blood , Kinetics , Male , Rabbits , Sodium Bicarbonate/chemistry , Solubility , Tablets/pharmacokinetics
4.
Biomed Res Int ; 2014: 735891, 2014.
Article in English | MEDLINE | ID: mdl-24678512

ABSTRACT

The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.


Subject(s)
Abelmoschus/chemistry , Dosage Forms , Plant Gums/chemistry , Propranolol/administration & dosage , Propranolol/pharmacology , Abelmoschus/ultrastructure , Administration, Oral , Calorimetry, Differential Scanning , Delayed-Action Preparations , Kinetics , Plant Mucilage/chemistry , Regression Analysis , Spectroscopy, Fourier Transform Infrared , Tablets , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...