Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 289(7): 1876-1896, 2022 04.
Article in English | MEDLINE | ID: mdl-34817923

ABSTRACT

ZAG is a multifunctional glycoprotein with a class I MHC-like protein fold and an α1-α2 lipid-binding groove. The intrinsic ZAG ligand is unknown. Our previous studies showed that ZAG binds the dansylated C11 fatty acid, DAUDA, differently to the boron dipyrromethane C16 fatty acid, C16 -BODIPY. Here, the molecular basis for this difference was elucidated. Multi-wavelength analytical ultracentrifugation confirmed that DAUDA and C16 -BODIPY individually bind to ZAG and compete for the same binding site. Molecular docking of lipid-binding in the structurally related Cluster of differentiation 1 proteins predicted nine conserved ligand contact residues in ZAG. Twelve mutants were accordingly created by alanine scanning site directed mutagenesis for characterisation. Mutation of Y12 caused ZAG to misfold. Mutation of K147, R157 and A158 abrogated C16 -BODIPY but not DAUDA binding. L69 and T169 increased the fluorescence emission intensity of C16 -BODIPY but not of DAUDA compared to wild-type ZAG and showed that C16 -BODIPY binds close to T169 and L69. Distance measurements of the crystal structure revealed K147 forms a salt bridge with D83. A range of bioactive bulky lipids including phospholipids and sphingolipids displaced DAUDA from the ZAG binding site but unexpectedly did not displace C16 -BODIPY. We conclude that the ZAG α1-α2 groove contains separate but overlapping sites for DAUDA and C16 -BODIPY and is involved in binding to a bulkier and wider repertoire of lipids than previously reported. This work suggested that the in vivo activity of ZAG may be dictated by its lipid ligand.


Subject(s)
Zinc , Zn-Alpha-2-Glycoprotein , Fatty Acids/metabolism , Glycoproteins/metabolism , Molecular Docking Simulation , Zinc/metabolism
2.
Biochem J ; 476(19): 2815-2834, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31506272

ABSTRACT

Human zinc-α2-glycoprotein (ZAG) is a 42 kDa adipokine which regulates body fat mass and is associated with cachexia and obesity. ZAG belongs to the major histocompatibility complex class I protein family and binds long-chain polyunsaturated fatty acids in its groove formed from the α1 and α2 domains. To identify the molecular basis of its lipid-binding function, we determined the first crystal structure at 2.49 Šresolution for fatty acid-bound ZAG, where the ligand was the fluorescent 11-(dansylamino)undecanoic acid (DAUDA). The 192 kDa crystallographic asymmetric unit contained six ZAG and eight fatty acid molecules in unique conformations. Six fatty acid molecules were localised to the ZAG grooves, where their tails were bound in two distinct conformations. The carboxylate groups of three fatty acids projected out of the groove, while the fourth was hydrogen bonded with R73 inside the groove. Other ligand-residue contacts were primarily hydrophobic. A new fatty acid site was revealed for two further DAUDA molecules at the ZAG α3 domains. Following conformational changes from unbound ZAG, the α3 domains formed tetrameric ß-barrel structures lined by fatty acid molecules that doubled the binding capacity of ZAG. Analytical ultracentrifugation revealed that ZAG in solution was a monomer in the absence of DAUDA, but formed small amounts of tetramers with DAUDA. By showing that ZAG binds fatty acids in different locations, we demonstrate an augmented mechanism for fatty acid binding in ZAG that is distinct from other known fatty acid binding proteins, and may be relevant to cachexia.


Subject(s)
Carrier Proteins/chemistry , Fatty Acids/chemistry , Glycoproteins/chemistry , Adipokines , Binding Sites , Crystallography, X-Ray , Dansyl Compounds/chemistry , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , Ligands , Models, Molecular , Protein Domains
3.
Biochem J ; 473(1): 43-54, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26487699

ABSTRACT

Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.


Subject(s)
Carrier Proteins/metabolism , Fatty Acids/metabolism , Glycoproteins/metabolism , Zinc/metabolism , Adipokines , Binding Sites/physiology , Carrier Proteins/chemistry , Fatty Acids/chemistry , Glycoproteins/chemistry , Humans , Protein Structure, Secondary , Protein Structure, Tertiary , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...