Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 07 12.
Article in English | MEDLINE | ID: mdl-37435808

ABSTRACT

Understanding the function of glutamate transporters has broad implications for explaining how neurons integrate information and relay it through complex neuronal circuits. Most of what is currently known about glutamate transporters, specifically their ability to maintain glutamate homeostasis and limit glutamate diffusion away from the synaptic cleft, is based on studies of glial glutamate transporters. By contrast, little is known about the functional implications of neuronal glutamate transporters. The neuronal glutamate transporter EAAC1 is widely expressed throughout the brain, particularly in the striatum, the primary input nucleus of the basal ganglia, a region implicated with movement execution and reward. Here, we show that EAAC1 limits synaptic excitation onto a population of striatal medium spiny neurons identified for their expression of D1 dopamine receptors (D1-MSNs). In these cells, EAAC1 also contributes to strengthen lateral inhibition from other D1-MSNs. Together, these effects contribute to reduce the gain of the input-output relationship and increase the offset at increasing levels of synaptic inhibition in D1-MSNs. By reducing the sensitivity and dynamic range of action potential firing in D1-MSNs, EAAC1 limits the propensity of mice to rapidly switch between behaviors associated with different reward probabilities. Together, these findings shed light on some important molecular and cellular mechanisms implicated with behavior flexibility in mice.


Subject(s)
Medium Spiny Neurons , Receptors, Dopamine D1 , Mice , Animals , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Neurons/physiology , Corpus Striatum/physiology , Glutamic Acid/metabolism , Mice, Transgenic
2.
Cell Rep ; 33(2): 108255, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053337

ABSTRACT

Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing.


Subject(s)
Astrocytes/physiology , CA1 Region, Hippocampal/physiology , Circadian Rhythm/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Amino Acid Transport System X-AG/metabolism , Animals , CA1 Region, Hippocampal/ultrastructure , Circadian Clocks/genetics , Corticosterone/metabolism , Darkness , Excitatory Postsynaptic Potentials/physiology , Gene Expression Regulation , Glutamic Acid/metabolism , Memory/physiology , Mice, Inbred C57BL , Neuropil Threads/metabolism , Open Field Test , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Time Factors , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...