Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 81(2): 397-405, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20732795

ABSTRACT

We previously reported that MR01, an indigenous strain of Pseudomonas aeruginosa, was able to produce a rhamnolipid-type biosurfactant. Here, we attempted to define the structural properties of this natural product. The analysis of the extracted biosurfactant by thin-layer chromatography (TLC) revealed the presence of two compounds corresponding to those of authentic mono- and di-rhamnolipid. The identity of two structurally distinguished rhamnolipids was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Liquid chromatography/mass spectrometry (LC/MS) of extracted biosurfactant revealed up to seventeen different rhamnolipid congeners. Further quantification showed di-rhamnolipids as the major compound (77.2%), while monorhamnolipids comprising a smaller proportion (22.8%) of MR01 biosurfactant. Rha-Rha-C10-C10 was verified as the major component of the MR01 biosurfactant (35.93%). Cytotoxic activity of MR01 biosurfactant against human cancer Hela cells showed an excellent inhibitory effect of 5µg/ml. An isolated mutant strain (MR01-C) created by Gamma ray irradiation demonstrated more than one and a half-fold biosurfactant production and activity compared with the parent strain. Analysis of the biosurfactant produced by MR01-C showed the magnitude of di-rhamnolipids in the sample increased up to 88.6% (∼15% higher than control) and the quantity of Rha-Rha-C10-C10 increased to 52.08% (∼45% higher than control).


Subject(s)
Antineoplastic Agents/chemistry , Gamma Rays , Glycolipids/chemistry , Pseudomonas aeruginosa/metabolism , Surface-Active Agents/chemistry , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Chlorocebus aethiops , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , Glycolipids/biosynthesis , Glycolipids/pharmacology , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Vero Cells
2.
Pol J Microbiol ; 56(2): 111-7, 2007.
Article in English | MEDLINE | ID: mdl-17650681

ABSTRACT

Pseudomonas fluorescens BM07 was characterized as a producer of cold-induced biopolymer by decreasing the temperature down to as low as 10 degrees C. It was previously shown that the synthesis of BM07 biopolymer was inhibited at 30 degrees C. The present study was conducted to investigate the biosorption of mercury (Hg2+) ions on the BM07 cells grown on M1 minimal medium at two temperatures (10 degrees C and 30 degrees C). The effects of various factors including pH, contact time, initial concentration of metal and cell biomass on the biosorption yield were also studied. Study of the effect of pH on mercury removal indicated that the metal biosorption increased with increasing pH from 3.0 to 7.0. The optimum adsorption pH value was found to be 7.0. Our results showed that, at optimum pH, BM07 cells were able to uptake the mercury up to 102 and 60 mg Hg2+/g dry biomass for 10 degrees C and 30 degrees C grown cells respectively. The removal capacity of cells increased when the cell biomass concentrations increased. The maximum removal efficiency was obtained when cells concentration was 0.83 mg dry biomass/ml for both conditions. The initial metal ion concentration significantly influenced the equilibrium metal uptake and adsorption yield. The equilibrium data were analyzed using Langmuir adsorption model. The qmax was 62.9 and 82.25 mg Hg2+/g dry biomass for cells grown at 30 degrees C and 10 degrees C respectively. The results suggest that, the existence of residual cold-induced biopolymer on the external surface of cells may play an important role in biosorption efficiency, as P. fluorescens BM07 cells which were grown at 10 degrees C under similar conditions showed higher efficiency to biosorbe mercury than non-polymer producing cells grown at 30 degrees C.


Subject(s)
Mercury/metabolism , Pseudomonas fluorescens/metabolism , Absorption , Biomass , Biopolymers/biosynthesis , Culture Media/chemistry , Hydrogen-Ion Concentration , Kinetics , Pseudomonas fluorescens/growth & development , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...