Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124792, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981287

ABSTRACT

Molecular interaction of entecavir (ETV) with the transport protein, albumin from bovine serum (BSA) was explored through multispectral and molecular docking approaches. The BSA fluorescence was appreciably quenched upon ETV binding and the quenching nature was static. The ETV-BSA complexation and the static quenching process were further reiterated using UV-visible absorption spectra. The binding constant (Ka) values of the complex were found as 1.47 × 104-4.0 × 103 M-1, which depicting a modarate binding strength in the ETV-BSA complexation. The experimental outcomes verified that the stable complexation was primarily influenced by hydrophobic interactions, hydrogen bonds and van der Waals forces. Synchronous and 3-D fluorescence spectral results demonstrated that ETV had significant impact on the hydrophobicity and polarity of the molecular environment near Tyr and Trp residues. Competitive site-markers displacement (with warfarin and ketoprofen) results discovered the suitable binding locus of ETV at site I in BSA. The molecular docking assessments also revealed that ETV formed hydrogen bonds and hydrophobic interactions with BSA, predominantly binding to site I (sub-domain IIA) of BSA.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122907, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37257323

ABSTRACT

Binding mechanisms of two selected pesticides, propazine (PRO) and quinoxyfen (QUI) with bovine serum albumin (BSA) was examined using fluorescence, absorption and molecular docking methods. Intrinsic fluorescence of BSA was quenched in the presence of both PRO and QUI. The quenching was ascertained to be conversely linked to temperature, which suggested the contribution of static quenching process in the PRO-BSA and QUI-BSA complex formations. This results were validated by the enhancement in absorption spectrum of BSA upon binding with PRO and QUI. Binding constant values (Kf = 9.55-0.60 × 10-3 M-1 for PRO-BSA system; Kf = 7.08-5.01 × 102 M-1 for QUI-BSA system) and number of binding site (n) values for the PRO-BSA and QUI-BSA systems at different temperatures affirmed a weak binding strength with a set of equivalent binding sites on BSA. Thermodynamic data obtained for both the PRO-BSA and QUI-BSA interactions predicted that the association process was spontaneous and non-covalent contacts such as hydrophobic interactions, van der Waals forces and hydrogen bonds participated in the binding reactions. This result was further supported by the molecular docking assessments. Three-dimensional spectral results revealed the microenvironmental alterations near tryptophan (Trp) and tyrosine (Tyr) residues in BSA by the addition of PRO and QUI. The docking analysis demonstrated the binding pattern for the PRO-BSA and QUI-BSA systems and disclosed the preferred binding site of both PRO and QUI as site I (subdomain IIA) of BSA.


Subject(s)
Serum Albumin, Bovine , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Protein Binding , Spectrometry, Fluorescence , Binding Sites , Thermodynamics , Circular Dichroism , Spectrophotometry, Ultraviolet
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122197, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36470090

ABSTRACT

Interactive association of an antifungal drug, climbazole (CBZ) with the carrier protein in bovine circulation, bovine serum albumin (BSA) was explored by fluorescence and absorption spectroscopy along with in silico techniques. The fluorescence and absorption spectral alterations of the protein upon addition of CBZ affirmed the complex foration between CBZ and BSA. The inverse temperature dependence behaviour of the KSV values as well as the hyperchromic result of the protein's absorption signals characterized CBZ-triggered quenching of BSA fluorescence as the static quenching. A weak binding affinity (Ka = 3.12-1.90-× 103 M-1) was reported towards the CBZ-BSA association process. Interpretation of thermodynamic data (entropy change = +14.68 J mol-1 K-1 and enthalpy change = -15.07 kJ mol-1) and in silico analyses anticipated that hydrophobic forces, van der Waals forces and hydrogen bonds were the key intermolecular forces in the complex stabilization. Inclusion of CBZ to BSA produced microenvironmental perturbations around Tyr and Trp residues, and also significantly defended temperature-induced destabilization of BSA. The binding locus of CBZ was detected in the proximity of Sudlow's sites I (subdomain IIA) and II (subdomain IIIA) of BSA, exhibiting greater preference towards site II, as revealed by competitive site-marker displacement investigations and in silico analysis. The stability of the CBZ-BSA complex was further validated by the molecular dynamics simulation assessments.


Subject(s)
Imidazoles , Serum Albumin, Bovine , Binding Sites , Circular Dichroism , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Thermodynamics , Imidazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...