Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Medicine (Baltimore) ; 103(9): e37401, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38428880

ABSTRACT

RATIONALE: Amyotrophic lateral sclerosis (ALS) poses a significant clinical challenge due to its rapid progression and limited treatment options, often leading to deadly outcomes. Looking for effective therapeutic interventions is critical to improve patient outcomes in ALS. PATIENT CONCERNS: The patient, a 75-year-old East Asian male, manifested an insidious onset of right-hand weakness advancing with dysarthria. Comprehensive Next-generation sequencing analysis identified variants in specific genes consistent with ALS diagnosis. DIAGNOSES: ALS diagnosis is based on El Escorial diagnostic criteria. INTERVENTIONS: This study introduces a novel therapeutic approach using artificial intelligence phenotypic response surface (AI-PRS) technology to customize personalized drug-dose combinations for ALS. The patient underwent a series of phases of AI-PRS-assisted trials, initially incorporating a 4-drug combination of Ibudilast, Riluzole, Tamoxifen, and Ropinirole. Biomarkers and regular clinical assessments, including nerve conduction velocity, F-wave, H-reflex, electromyography, and motor unit action potential, were monitored to comprehensively evaluate treatment efficacy. OUTCOMES: Neurophysiological assessments supported the ALS diagnosis and revealed the co-presence of diabetic polyneuropathy. Hypotension during the trial necessitated an adaptation to a 2-drug combinational trial (ibudilast and riluzole). Disease progression assessment shifted exclusively to clinical tests of muscle strength, aligning with the patient's well-being. LESSONS: The study raises the significance of personalized therapeutic strategies in ALS by AI-PRS. It also emphasizes the adaptability of interventions based on patient-specific responses. The encountered hypotension incident highlights the importance of attentive monitoring and personalized adjustments in treatment plans. The described therapy using AI-PRS, offering personalized drug-dose combinations technology is a potential approach in treating ALS. The promising outcomes warrant further evaluation in clinical trials for searching a personalized, more effective combinational treatment for ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Hypotension , Humans , Male , Aged , Riluzole/therapeutic use , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Artificial Intelligence , Treatment Outcome , Hypotension/drug therapy
2.
Mol Biochem Parasitol ; 149(1): 27-37, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16730080

ABSTRACT

Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.


Subject(s)
RNA Polymerase I/chemistry , RNA Polymerase I/isolation & purification , Trypanosoma brucei brucei/enzymology , Amino Acid Sequence , Animals , Chromatography, Affinity , DNA, Complementary , Molecular Sequence Data , Phylogeny , Protein Binding , RNA Polymerase I/metabolism , Sequence Alignment , Trypanosoma brucei brucei/genetics
SELECTION OF CITATIONS
SEARCH DETAIL