Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724915

ABSTRACT

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Subject(s)
Fusarium , Plant Diseases , Tulipa , Plant Diseases/microbiology , Fusarium/pathogenicity , Tulipa/microbiology , Botrytis/pathogenicity , Penicillium chrysogenum/pathogenicity , Aspergillus niger/pathogenicity , Virulence , Plant Roots/microbiology
2.
Biomedicines ; 12(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540164

ABSTRACT

Hyperchloremia and hypernatremia are associated with higher mortality in ischemic stroke, but it remains unclear whether their influence directly contributes to ischemic injury. We investigated the impact of 0.9% sodium chloride (154 mM NaCl), 0.9% sodium acetate (167 mM CH3COONa), and their different combinations (3:1, 2:1, and 1:1) on microglial (HMC-3) and neuronal (differentiated SH-SY5Y) survival during oxygen-glucose deprivation/reperfusion (OGD/R). Further, we assessed the effect of hyperchloremia and hypernatremia-treated and OGD/R-induced HMC-3-conditioned media on differentiated SH-SY5Y cells under OGD/R conditions. We performed cell viability, cell toxicity, and nitric oxide (NO) release assays and studied the alteration in expression of caspase-1 and caspase-3 in different cell lines when exposed to hyperchloremia and hypernatremia. Cell survival was decreased in 0.9% NaCl, 0.9% CH3COONa, combinations of HMC-3 and differentiated SH-SY5Y, and differentiated SH-SY5Y cells challenged with HMC-3-conditioned media under normal and OGD/R conditions. Under OGD/R conditions, differentiated SH-SY5Y cells were less likely to survive exposure to 0.9% NaCl. Expression of caspase-1 and caspase-3 in HMC-3 and differentiated SH-SY5Y cells was altered when exposed to 0.9% NaCl, 0.9% CH3COONa, and their combinations. A total of 0.9% NaCl and 0.9% CH3COONa and their combinations decreased the NO production in HMC-3 cells under normal and OGD/R conditions. Both hypernatremia and hyperchloremia reduced the survival of HMC-3 and differentiated SH-SY5Y cells under OGD/R conditions. Based on the OGD/R in vitro model that mimics human ischemic stroke conditions, it possibly provides a link for the increased death associated with hyperchloremia or hypernatremia in stroke patients.

3.
Theor Appl Genet ; 137(1): 32, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270625

ABSTRACT

KEY MESSAGE: Mapping and fine mapping of bean anthracnose resistance genes is a continuous process. We report fine mapping of anthracnose resistance gene Co-18 which is the first anthracnose gene mapped to Pv10. The discovery of resistance gene is a major gain in the bean anthracnose pathosystem research. Among the Indian common bean landraces, KRC-5 exhibit high levels of resistance to the bean anthracnose pathogen Colletotrichum lindemuthianum. To precisely map the anthracnose resistance gene, we used a Recombinant Inbred Line (F2:9 RIL) population (KRC-5 × Jawala). The inheritance test revealed that KRC-5 carries a dominant resistance gene temporarily designated as Co-18. We discovered two RAPD markers linked to Co-18 among 287 RAPD markers. These RAPD markers were eventually developed into SCARs (Sc-OPR15 and Sc-OPF6) and flank Co-18 on chromosome Pv10 at a distance of 5.3 and 4.2 cM, respectively. At 4.0-4.1 Mb on Pv10, we detected a SNP (single-nucleotide polymorphism) signal. We synthesized 58 SSRs and 83 InDels from a pool of 135 SSRs and 1134 InDels, respectively. Five SSRs, four InDels, and two SCARs were used to generate the high-density linkage map, which led to the identification of two SSRs (SSR24 and SSR36) that are tightly linked to Co-18. These two SSRs flank the Co-18 to 178 kb genomic region with 13 candidate genes including five NLR (nucleotide-binding and leucine-rich repeat) genes. The closely linked markers SSR24 and SSR36 will be used in cloning and pyramiding of the Co-18 gene with other R genes to develop durable resistant bean varieties.


Subject(s)
Phaseolus , Phaseolus/genetics , Cicatrix , Random Amplified Polymorphic DNA Technique , Chromosome Mapping , Genes, Dominant
4.
Cells ; 13(2)2024 01 18.
Article in English | MEDLINE | ID: mdl-38247879

ABSTRACT

This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aß plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.


Subject(s)
Actin Depolymerizing Factors , Alzheimer Disease , Amyotrophic Lateral Sclerosis , Parkinson Disease , Stroke , Humans , alpha-Synuclein , Stroke/metabolism
5.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256947

ABSTRACT

Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1ß assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.

6.
Craniomaxillofac Trauma Reconstr ; 16(4): 268-274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38047146

ABSTRACT

Study Design: A prospective randomized comparative study was conducted to evaluate the postsurgical scar with Supraorbital Eyebrow (SE) Approach and Upper Blepharoplasty (UB) Approach used for open reduction and internal fixation (ORIF) of zygomaticomaxillary complex (ZMC) fractures. Objective: To evaluate and compare the post-operative scar using Vancouver Scar Scale (VSS) following ORIF of ZMC fractures with SE and UB approaches. Methods: In this study, 88 patients with ZMC fractures requiring ORIF and meeting the inclusion criteria were recruited between 2019 and 2020. Patients were randomly divided into SE and UB group, 44 patients in each. Clinical and radiological assessment was done preoperatively and post-operative scar evaluation was carried out at different intervals over a period of 6 months using VSS. A blinded observer rated the scar. Results: The results showed that after 6 months of surgery, all the 44 (100%) patients in UB group had a mild scar (VSS score 1-5), while in the SE group 34 (77.3%) patients had a mild scar (VSS score 1-5) and 10 (22.7%) had a moderate scar (VSS score 6-10). The difference between the 2 groups was statistically significant (P-value = .001). Conclusions: The UB approach has been established to be superior to SE approach in terms of post-operative scar as the results were statistically significant. This study can be used to advocate more frequent use of UB approach as compared to the previously popular SE approach for the management of ZMC fractures.

7.
J Physiol ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702572

ABSTRACT

Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.

8.
Brain Sci ; 13(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37759859

ABSTRACT

Flavonoids are a large subgroup of polyphenols known to be sourced from over 6000 natural products, including fruits, vegetables, bark, and herbs. Due to their antioxidant properties, flavonoids have been implicated as a therapy source for many diseases and conditions, including inflammation, vasculitis, venous insufficiency, and hemorrhoids. Currently, some flavonoids are being researched for their antioxidant ability concerning neuroprotection. These flavonoids can penetrate the blood-brain barrier and, depending on the specific flavonoid, retain adequate bioavailability in certain brain regions. Further data suggest that flavonoids could have a strong anti-inflammatory effect in the brain, which not only could be a robust therapeutic source for known neuroinflammatory diseases such as Alzheimer's Disease or Parkinson's Disease but also could be a therapeutic source for ischemic or hemorrhagic conditions such as a stroke. While flavonoid toxicity exists, they are relatively safe and non-invasive drugs from natural origins. As such, exploring the known mechanisms and therapies may highlight and establish flavonoid therapy as a viable source of therapy for stroke patients. As stated, many flavonoids are already being isolated, purified, and implemented in both in vitro and in vivo experiments. As these flavonoids proceed to clinical trials, it will be important to understand how they function as a therapy, primarily as antioxidants, and by other secondary mechanisms. This review aims to elucidate those mechanisms and explore the neuroprotective role of flavonoids.

9.
Article in English | MEDLINE | ID: mdl-37592792

ABSTRACT

Traumatic brain injury (TBI) is a major healthcare problem and a common cause of mortality and morbidity. Clinical and preclinical research suggests sex-related differences in short- and long-term outcomes following TBI; however, males have been the main focus of TBI research. Females show a protective response against TBI. Female animals in preclinical studies and women in clinical trials have shown comparatively better outcomes against mild, moderate, or severe TBI. This reflects a favorable protective nature of the females compared to the males, primarily attributed to various protective mechanisms that provide better prognosis and recovery in the females after TBI. Understanding the sex difference in the TBI pathophysiology and the underlying mechanisms remains an elusive goal. In this review, we provide insights into various mechanisms related to the anatomical, physiological, hormonal, enzymatic, inflammatory, oxidative, genetic, or mitochondrial basis that support the protective nature of females compared to males. Furthermore, we sought to outline the evidence of multiple biomarkers that are highly potential in the investigation of TBI's prognosis, pathophysiology, and treatment and which can serve as objective measures and novel targets for individualized therapeutic interventions in TBI treatment. Implementations from this review are important for the understanding of the effect of sex on TBI outcomes and possible mechanisms behind the favorable response in females. It also emphasizes the critical need to include females as a biological variable and in sufficient numbers in future TBI studies.

10.
Neurochem Int ; 169: 105573, 2023 10.
Article in English | MEDLINE | ID: mdl-37454816

ABSTRACT

A major endoplasmic reticulum (ER) chaperone, binding of Immunoglobulin heavy chain protein (BIP) facilitates the assembly of newly synthesized proteins in the ER. Microglia vigorously respond to brain injuries and eliminate the damaged neuronal and apoptotic cells through phagocytosis in the central nervous system. However, the mechanism of BIP-mediated microglial function is not clear in hyperglycemia. We explored the molecular mechanism of BIP in microglial function during hyperglycemic conditions. Hyperglycemia was induced in mice by two consecutive intraperitoneal injections of streptozotocin (STZ 100/kg) and confirmed by measuring the blood glucose from day 2 to day 14. After 14 days of experimental hyperglycemia, mice were sacrificed and brains were collected for ER chaperone expression. In-vitro hyperglycemia was induced by exposing HMC3 cells to 25 mM glucose for 5 days and proteins involved in ER stress, apoptosis, and autophagy were analyzed. In hyperglycemic conditions, BIP protein expression was dramatically reduced in HMC3 cells, which led to increased apoptosis through the activation of CHOP and mitochondrial pro-apoptotic proteins (Bax, Bad, and cleaved caspase-3). The flow cytometry results indicate hyperglycemia-induced apoptosis and reactive oxygen species (ROS) production. Interestingly, the BIP inducer X restored the apoptosis in HMC3 cells by derepressing BIP expression and inhibiting ER stress. These results suggest that the ER chaperone BIP is required for the microglial function and protects from apoptosis in hyperglycemia. A better understanding of BIP's molecular mechanism and role in microglial function may contribute to developing novel therapies for microglia dysfunction-associated neurodegenerative diseases.


Subject(s)
Hyperglycemia , Microglia , Animals , Mice , Apoptosis , Carrier Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Heat-Shock Proteins/metabolism , Hyperglycemia/metabolism , Microglia/metabolism , Molecular Chaperones/metabolism , Humans
11.
Physiol Plant ; 175(4): e13969, 2023.
Article in English | MEDLINE | ID: mdl-37401892

ABSTRACT

Given the challenges of population growth and climate change, there is an urgent need to expedite the development of high-yielding stress-tolerant crop cultivars. While traditional breeding methods have been instrumental in ensuring global food security, their efficiency, precision, and labour intensiveness have become increasingly inadequate to address present and future challenges. Fortunately, recent advances in high-throughput phenomics and genomics-assisted breeding (GAB) provide a promising platform for enhancing crop cultivars with greater efficiency. However, several obstacles must be overcome to optimize the use of these techniques in crop improvement, such as the complexity of phenotypic analysis of big image data. In addition, the prevalent use of linear models in genome-wide association studies (GWAS) and genomic selection (GS) fails to capture the nonlinear interactions of complex traits, limiting their applicability for GAB and impeding crop improvement. Recent advances in artificial intelligence (AI) techniques have opened doors to nonlinear modelling approaches in crop breeding, enabling the capture of nonlinear and epistatic interactions in GWAS and GS and thus making this variation available for GAB. While statistical and software challenges persist in AI-based models, they are expected to be resolved soon. Furthermore, recent advances in speed breeding have significantly reduced the time (3-5-fold) required for conventional breeding. Thus, integrating speed breeding with AI and GAB could improve crop cultivar development within a considerably shorter timeframe while ensuring greater accuracy and efficiency. In conclusion, this integrated approach could revolutionize crop breeding paradigms and safeguard food production in the face of population growth and climate change.


Subject(s)
Crops, Agricultural , Genome-Wide Association Study , Crops, Agricultural/genetics , Artificial Intelligence , Plant Breeding/methods , Genomics/methods
12.
3 Biotech ; 13(5): 136, 2023 May.
Article in English | MEDLINE | ID: mdl-37124992

ABSTRACT

In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03563-6.

13.
Cells ; 12(8)2023 04 13.
Article in English | MEDLINE | ID: mdl-37190062

ABSTRACT

Intracerebral hemorrhage (ICH) is a significant health concern associated with high mortality. Cofilin plays a crucial role in stress conditions, but its signaling following ICH in a longitudinal study is yet to be ascertained. In the present study, we examined the cofilin expression in human ICH autopsy brains. Then, the spatiotemporal cofilin signaling, microglia activation, and neurobehavioral outcomes were investigated in a mouse model of ICH. Human autopsy brain sections from ICH patients showed increased intracellular cofilin localization within microglia in the perihematomal area, possibly associated with microglial activation and morphological changes. Various cohorts of mice were subjected to intrastriatal collagenase injection and sacrificed at time points of 1, 3, 7, 14, 21, and 28 days. Mice suffered from severe neurobehavioral deficits after ICH, lasting for 7 days, followed by a gradual improvement. Mice suffered post-stroke cognitive impairment (PSCI) both acutely and in the chronic phase. Hematoma volume increased from day 1 to 3, whereas ventricle size increased from day 21 to 28. Cofilin protein expression increased in the ipsilateral striatum on days 1 and 3 and then decreased from days 7 to 28. An increase in activated microglia was observed around the hematoma on days 1 to 7, followed by a gradual reduction up to day 28. Around the hematoma, activated microglia showed morphological changes from ramified to amoeboid. mRNA levels of inflammatory [tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and interleukin-6 (IL-6) and anti-inflammatory markers [interleukin-10 (IL-10), transforming growth factor-ß TGF-ß, and arginase I (Arg1)] increased during the acute phase and decreased in the chronic phase. Blood cofilin levels increased on day 3 and matched the increase in chemokine levels. slingshot protein phosphatase 1 (SSH1) protein, which activates cofilin, was increased from day 1 to 7. These results suggest that microglial activation might be the sequel of cofilin overactivation following ICH, leading to widespread neuroinflammation and consequent PSCI.


Subject(s)
Brain Injuries , Stroke , Humans , Mice , Animals , Microglia/metabolism , Neuroinflammatory Diseases , Actin Depolymerizing Factors/metabolism , Longitudinal Studies , Cerebral Hemorrhage/pathology , Hematoma/pathology , Brain Injuries/pathology , Stroke/metabolism
14.
Plants (Basel) ; 12(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050128

ABSTRACT

Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.

15.
Biology (Basel) ; 12(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37106830

ABSTRACT

Microglial activation and failure of the antioxidant defense mechanisms are major hallmarks in different brain injuries, particularly traumatic brain injury (TBI). Cofilin is a cytoskeleton-associated protein involved in actin binding and severing. In our previous studies, we identified the putative role of cofilin in mediating microglial activation and apoptosis in ischemic and hemorrhagic conditions. Others have highlighted the involvement of cofilin in ROS production and the resultant neuronal death; however, more studies are needed to delineate the role of cofilin in oxidative stress conditions. The present study aims to investigate the cellular and molecular effects of cofilin in TBI using both in vitro and in vivo models as well as the first-in-class small-molecule cofilin inhibitor (CI). An in vitro H2O2-induced oxidative stress model was used in two different types of cells, human neuroblastoma (SH-SY5Y) and microglia (HMC3), along with an in vivo controlled cortical impact model of TBI. Our results show that treatment with H2O2 increases the expression of cofilin and slingshot-1 (SSH-1), an upstream regulator of cofilin, in microglial cells, which was significantly reduced in the CI-treated group. Cofilin inhibition significantly attenuated H2O2-induced microglial activation by reducing the release of proinflammatory mediators. Furthermore, we demonstrate that CI protects against H2O2-induced ROS accumulation and neuronal cytotoxicity, activates the AKT signaling pathway by increasing its phosphorylation, and modulates mitochondrial-related apoptogenic factors. The expression of NF-E2-related factor 2 (Nrf2) and its associated antioxidant enzymes were also increased in CI-treated SY-SY5Y. In the mice model of TBI, CI significantly activated the Nrf2 and reduced the expression of oxidative/nitrosative stress markers at the protein and gene levels. Together, our data suggest that cofilin inhibition provides a neuroprotective effect in in vitro and in vivo TBI mice models by inhibiting oxidative stress and inflammatory responses, the pivotal mechanisms involved in TBI-induced brain damage.

16.
Article in English | MEDLINE | ID: mdl-37100105

ABSTRACT

Globally around 24 million elderly population are dealing with dementia, and this pathological characteristic is commonly seen in people suffering from Alzheimer's disease (AD). Despite having multiple treatment options that can mitigate AD symptoms, there is an imperative call to advance our understanding of the disease pathogenesis to unfold disease-modifying treatments/therapies. To explore the driving mechanisms of AD development, we stretch out further to study time-dependant changes after Okadaic acid (OKA)-induced AD-like conditions in zebrafish. We evaluated the pharmacodynamics of OKA at two-time points, i.e., after 4-days and 10-days exposure to zebrafish. T-Maze was utilized to observe the learning and cognitive behaviour, and inflammatory gene expressions such as 5-Lox, Gfap, Actin, APP, and Mapt were performed in zebrafish brains. To scoop everything out from the brain tissue, protein profiling was performed using LCMS/MS. Both time course OKA-induced AD models have shown significant memory impairment, as evident from T-Maze. Gene expression studies of both groups have reported an overexpression of 5-Lox, GFAP, Actin, APP, and OKA 10D group has shown remarkable upregulation of Mapt in zebrafish brains. In the case of protein expression, the heatmap suggested an important role of some common proteins identified in both groups, which can be explored further to investigate their mechanism in OKA-induced AD pathology. Presently, the preclinical models available to understand AD-like conditions are not completely understood. Hence, utilizing OKA in the zebrafish model can be of great importance in understanding the pathology of AD progression and as a screening tool for drug discovery.


Subject(s)
Alzheimer Disease , Aged , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Zebrafish/metabolism , Proteomics , Actins/metabolism , Brain/metabolism , Okadaic Acid/adverse effects , Okadaic Acid/metabolism , Genomics , Disease Models, Animal
17.
Environ Monit Assess ; 195(5): 623, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115430

ABSTRACT

Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.


Subject(s)
Aquilegia , Climate Change , Environmental Monitoring , Ecosystem , Biodiversity
18.
Neural Regen Res ; 18(9): 1881-1883, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36926703

ABSTRACT

Coronavirus disease 2019 (COVID-19) has affected a broad demographics, eliciting a more significant effect on specific groups such as males, African Americans, and Hispanic minorities. Treatment of COVID-19 often requires antiviral drugs or monoclonal antibodies. However, immunotherapies such as mesenchymal stem cells and mesenchymal stem cells-derived exosomal vesicles should be evaluated as treatment options for COVID-19. Mesenchymal stem cell therapy offers regenerative, anti-inflammatory, and immunomodulatory properties that can speed up the recovery from COVID-19. Mesenchymal stem cell therapy can also benefit COVID-19 patients who suffer from strokes, as COVID-19 increases the risk of strokes due to increased cytokines and clotting factors. Most stroke cases that occur in COVID-19 patients are ischemic strokes. Therefore, with the help of mesenchymal stem cell therapy and mesenchymal stem cells-derived exosomes, COVID-19-induced stroke patients might benefit from dual-ended treatment. The objective of this review was to discuss COVID-19 and stroke incidence and the available treatment options.

19.
J Cancer ; 14(3): 490-504, 2023.
Article in English | MEDLINE | ID: mdl-36860921

ABSTRACT

Cancer is the major challenge across world and the adenocarcinoma of prostate malignancy is the second most prevalent male cancer. Various medicinal plants are used for the treatment and management of various cancers. Matricaria chamomilla L., is one of the extensively used Unani medicament for the treatment of various type of diseases. In the current study we evaluated most of the parameters prescribed for drug standardization using pharmacognostic approaches. The 2,2 Diphenyl-1-picryl hydrazyl (DPPH) method was utilized for the analysis of antioxidant activity in the flower extracts of M. chamomilla. Moreover, we analyzed the antioxidant and cytotoxic activity of M. chamomilla (Gul-e Babuna) through in-vitro method. DPPH (2,2-diphenyl-1-picryl-hydrazl-hydrate) method was utilized for the analysis of antioxidant activity in the flower extracts of M. chamomilla. CFU and wound healing assay were performed to determine the anti-cancer activity. The results demonstrated that various extracts of M. chamomilla fulfilled most of the parameters of drug standardization and contained good antioxidant and anticancer activities. The ethyl acetate showed higher anticancer activity followed by aqueous, hydroalcoholic, petroleum benzene and methanol by CFU method. Also, the wound healing assay demonstrated that ethyl acetate extract has more significant effect followed by methanol and petroleum benzene extract on prostate cancer cell line (C4-2). The current study concluded that the extract of M. chamomilla flowers could act as good source of natural anti-cancer compounds.

20.
Physiol Mol Biol Plants ; 29(1): 87-91, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36733833

ABSTRACT

Saussurea costus (Asteraceae) commonly known as kuth, is an important medicinal plant with a rich repository of medicinally valuable compounds. During the present study, pharmacologically important sesquiterpene lactones namely costunolide, dehydrocostus lactone, betulinic acid and syringin were isolated from different plant extracts. Furthermore, the elicitation effect of jasmonic acid (JA) and different light regiments on the accumulation of secondary metabolites (costunolide and dehydrocostus lactone) was evaluated using HPLC. There was an increase in amount of costunolide and dehydrocostus lactone compared to control after 96 h of treatment with JA and continuous light. The amount of costunolide after 96 h was maximum 6.47 mg/g DW in response to JA as compared to control which was found to be 1.7 mg/g DW. Similarly, the concentration of dehydrocostus lactone after 96 h showed maximum accumulation of compound 4.7 mg/g DW in response to continuous light. The in vitro response in MS medium augmented with BAP (4 mg/l) produces friable and creamish coloured callus, however, number of days increased from 10 to 22 days with 70% culture response. Also, Agrobacterium rhizogenes strain LBA9402 was found to be most effective strain for the establishment of hairy root cultures among all the strains used. The genomic DNA was used as template in PCR to amplify rolB gene which confirmed the efficient transformation of the roots. Additionally, total metabolite content of in vitro raised hairy roots of S. costus was significantly higher than the field grown plants. The production of secondary metabolites through elicitation and hairy roots can serve as a potential tool for the conservation action programme in S. costus. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01270-9.

SELECTION OF CITATIONS
SEARCH DETAIL
...