Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(55): e202301675, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37458183

ABSTRACT

A novel two-step method for formylation of fluoropyridines with silylformamidine Me3 SiC(=NMe)NMe2 (1) under catalyst-free conditions was developed. A series of all possible 18 fluoropyridines featuring one to four fluorine atoms were subjected to the reaction with 1 existing in equilibrium with its carbenic form Me2 NC(:)N(Me)SiMe3 (1'). Among them, 12 fluoropyridines were shown to react via C-H insertion. The reaction proceeded either at ß- or γ-positions affording the corresponding aminals. The more fluorine atoms in pyridines, the easier the reaction proceeded. We also hypothesized that the pyridines in which the fluorine was substituted by other halogens would react in a similar manner. To test the hypothesis, a set of 3,5-disubstituted pyridines with various combination of halogen atoms was prepared. 3,5-Difluoropyridine was taken as a compound for comparison. All the pyridines in the series also reacted likewise. In most cases, hydrolysis of the aminals afforded the corresponding aldehydes. As DFT calculations indicate, the reaction mechanism includes deprotonation of pyridine by 1' as a strong base and the following rearrangement of the formed tight ionic pair to the final product. An alternative reaction pathway involving addition of 1' to the pyridine carbon with the following hydrogen transfer via a three-membered transition state structure required much higher activation energy.

2.
J Org Chem ; 88(11): 7233-7244, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37196314

ABSTRACT

Silylformamidine 1 exists in equilibrium with its carbenic form 1' due to an easy migration of the silyl group. The reaction of 1 with variously substituted fluorobenzenes proceeds as an insertion of the nucleophilic carbene 1' into the most acidic C-H bond upon mixing the reagents and does not require any catalyst. According to DFT calculations, the classical interpretation of the insertion reaction proceeding via a three-membered transition state structure requires high activation energy. Instead, low activation barriers are predicted for a transfer of the most acidic proton in the aromatic substrate to the carbene carbon. As the next step, a barrierless rearrangement of the formed ion pair toward the product completes the process. The reactivity of substituted benzenes in the reaction with silylformamidine can be roughly assessed by calculated pKa (DMSO) values for the C-H hydrogens. Benzene derivatives having pKa approx. less than 31 can undergo C-H insertion. The reaction provides aminals as the first products, which can easily be transformed into the corresponding aldehydes via acidic hydrolysis. As silylformamidine 1 is tolerant to many functional groups, the reaction can be applied to numerous benzene derivatives, making it a reliable strategy for application in organic synthesis.

3.
Biomed Pharmacother ; 162: 114701, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062222

ABSTRACT

Cancer ranks among the leading causes of mortality worldwide. However, the efficacy of commercially available anticancer drugs is compromised by the emerging challenge of drug resistance. This study aimed to investigate the anticancer and immunomodulatory potential of a recently developed a novel [2-(4-(2,5-dimethyl-1 H-pyrrol-1-yl)- 1 H-pyrazol-3-yl) pyridine]. The cytotoxic potential of the compound was assessed using the MTT assay on both cancerous HL60 (acute myeloid leukemia) and K562 (chronic myeloid leukemia) cell lines, as well as non-cancerous Vero cells and human peripheral blood mononuclear cells (PBMCs). A clonogenic assay was employed to evaluate the anticancer efficacy of the compound, while flow cytometry was utilized to investigate its effect on cell cycle arrest. Furthermore, the immunomodulatory potential of the compound was assessed by quantifying inflammatory and anti-inflammatory biomarkers in the supernatant of PBMCs previously treated with the compound. Our study revealed that the novel pyridine ensemble exhibits selective cytotoxicity against HL60 (IC50 = 25.93 µg/mL) and K562 (IC50 = 10.42 µg/mL) cell lines, while displaying no significant cytotoxic effect on non-cancerous cells. In addition, the compound induced a decrease of 18% and 19% in the overall activity of COX-1 and COX-2, respectively. Concurrently, it upregulated the expression of cytokines including IL4, IL6, IL10, and IL12/23p40, while downregulating INFγ expression. These findings suggest that the compound has the potential to serve as a promising candidate for the treatment of acute and chronic myeloid leukemias due to its effective antiproliferative and immunomodulatory activities, without causing cytotoxicity in non-cancerous cells.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Animals , Chlorocebus aethiops , Humans , Leukocytes, Mononuclear , Vero Cells , Antineoplastic Agents/pharmacology , Pyridines , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...