Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Drug Test Anal ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982650

ABSTRACT

An outline of the approach taken by international greyhound regulators to establish internationally harmonised screening limits and detection times in greyhound racing, which included a program of administration studies and an extensive and recognised risk assessment process, to ensure delivery of an effective anti-doping and medication control program.

2.
3.
Equine Vet J ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634210

ABSTRACT

BACKGROUND: Musculoskeletal injuries (MSI) are common in racehorses and have been of increasing concern in horses travelling internationally to compete. Understanding the differences in bone turnover between local horses and international horses following long-distance air transportation may inform MSI prevention strategies. OBJECTIVES: To understand the differences in bone turnover markers and risk of MSI between local horses and international horses following long-distance air transportation. STUDY DESIGN: Prospective cohort. METHODS: The concentrations of bone turnover markers (OCN and CTXI), markers of stress (cortisol), inflammation (serum amyloid A) and circadian rhythm (melatonin), and bisphosphonates were determined in blood samples collected twice (14-17 days apart), from horses following international travel (n = 69), and from local horses (n = 79). The associations between markers, long-distance travel and MSI were determined using multivariable generalised linear regression models. RESULTS: Within 3-5 days post-transport, concentrations of cortisol in international horses were higher than those of local horses (main effect, Coef. 0.39; 95% CI 0.24, 0.54; p < 0.001) but they decreased and were not different to those of local horses at the second timepoint (interaction effect, Coef. -0.27; 95% CI -0.46, -0.07; p = 0.007). After adjusting for age and sex, OCN and CTXI were not significantly different between international and local horses; however, OCN was lower in international horses at timepoint 2 (interaction effect, Coef. -0.16; 95% CI -0.31, -0.01; p = 0.043). The prevalence of MSI was higher in the international (26%; 95% CI 16, 38%) compared with local horses (8%; 95% CI 3, 16%; p < 0.001), with all severe MSI sustained by the international horses. At the second timepoint compared with the first timepoint post-transport, cortisol remained high or increased (interaction effect, Coef. 0.43; 95% CI 0.24, 0.61; p < 0.001) and OCN increased (interaction effect, Coef. 0.26; 95% CI 0.08, 0.44; p = 0.006) in the horses that sustained severe MSI. MAIN LIMITATIONS: Horse population and racing career parameters differed between groups. Bone turnover markers have low sensitivity to detect local bone changes. CONCLUSIONS: Most horses showed minimal effects of long-distance air transport within 2 weeks relative to local horses as assessed by stress and bone turnover markers. Screening for persistent high cortisol and evidence of net bone formation after long-distance air transportation may help to identify racehorses at high risk of catastrophic MSI.


CONTEXTE: Les blessures musculosquelettiques (MSI) sont communes chez les chevaux de course et demeurent une source d'inquiétude pour les chevaux voyageant à l'international. Comprendre les différences de remodelage osseux entre les chevaux locaux et ceux voyageant suivant un trajet aérien longue distance pourrait aider au développement de stratégies de prévention des dommages musculosquelettiques. OBJECTIFS: Comprendre les différences de marqueurs de remodelage osseux et de risques de MSI entre les chevaux locaux et ceux voyageant à l'international suivant un transport aérien de longue distance. TYPE D'ÉTUDE: Étude de cohorte prospective. MÉTHODES: Les concentrations des marqueurs de remodelage osseux (OCN et CTXI), de stress (cortisol), d'inflammation (serum amyloid A), de rythme circadien (melatonin) et les bisphosphonates ont été mesurés dans des échantillons sanguins à deux reprises (14­17 jours à part) chez des chevaux ayant été à l'international (n = 69) et étant restés localement (n = 79). L'association entre les marqueurs, le transport longue distance et les MSI a été déterminée par modèles de régression linéaire multivarié généralisé. RÉSULTATS: Entre 3 à 5 jours suivant le transport, les concentrations de cortisol chez les chevaux internationaux étaient supérieures aux chevaux locaux (effet primaire, Coef. 0.39; 95% CI 0.24, 0.54; P < 0.001), mais ont diminué par la suite jusqu'à ne plus être différent de ceux des chevaux locaux à la deuxième mesure (effet interaction, Coef. −0.27; 95% CI −0.46, −0.07; P = 0.007). Après ajustement pour l'âge et le sexe, OCN et CTXI n'étaient pas significativement différents entre les chevaux internationaux et locaux. Cependant, OCN était inférieur chez les chevaux internationaux à la deuxième mesure (effet interaction, Coef. −0.16; 95% CI −0.31, −0.01; P = 0.043). La prévalence de MSI était plus élevée chez les chevaux internationaux (26%; 95% CI 16, 38%) comparativement aux chevaux locaux (8%; 95% CI 3, 16%; p < 0.001), avec toutes les MSI sévères subi par les chevaux internationaux. Au moment de la deuxième mesure comparée à la première mesure après le transport, le cortisol est demeuré élevé ou a augmenté (effet interaction, Coef. 0.43; 95% CI 0.24, 0.61; P < 0.001) et l'OCN a augmenté (effet interaction, Coef. 0.26; 95% CI 0.08, 0.44; P = 0.006) chez les chevaux ayant subi une MSI sévère. LIMITES PRINCIPALES: La population équine et leurs paramètres de course diffèrent entre les groupes. Les marqueurs de remodelage osseux ont une faible sensibilité pour la détection de changements osseux localisés. CONCLUSION: En deux semaines, les effets de transport aérien longue distance ont été minimaux pour la majorité des chevaux comparativement aux chevaux locaux, tel que démontré par les marqueurs de stress et de remodelage osseux. La détection de niveau élevé de cortisol de façon persistante et d'évidence d'os néoformé suivant un transport aérien de longue distance pourrait aider à détecter les chevaux de course à haut risque de MSI.

4.
Steroids ; 190: 109150, 2023 02.
Article in English | MEDLINE | ID: mdl-36511323

ABSTRACT

Δ6-Methyltestosterone was reported as the main active ingredient of the purported "dietary supplement" Jungle Warfare. This compound is structurally similar to 17α-methyltestosterone, containing an additional Δ6 double bond, and is reported to possess notable androgenic activity, raising concerns over the potential for abuse of Jungle Warfare in sport. The in vivo metabolism of Δ6-methyltestosterone in greyhounds was investigated. Urinary phase I (unconjugated) and phase II (glucuronide) metabolites were detected following oral administration using liquid chromatography-mass spectrometry. No phase II sulfate metabolites were detected. The major phase I metabolite was confirmed as 16α,17ß-dihydroxy-17α-methylandrosta-4,6-dien-3-one by comparison with a synthetically-derived reference material. Minor amounts of the parent drug were also confirmed. Glucuronide conjugated metabolites were also observed, but were found to be resistant to hydrolysis using the Escherichia coli ß-glucuronidase enzyme. Qualitative excretion profiles, limits of detection, and extraction recoveries were determined for the parent drug and the major phase I metabolite. These results provide a method for the detection of Jungle Warfare abuse in greyhounds suitable for incorporation into routine screening methods conducted by anti-doping laboratories.


Subject(s)
Anabolic Agents , Doping in Sports , Animals , Dogs , Methyltestosterone/analysis , Methyltestosterone/metabolism , Gas Chromatography-Mass Spectrometry/methods , Glucuronides , Androgens , Mass Spectrometry , Anabolic Agents/metabolism , Substance Abuse Detection/methods
5.
Drug Test Anal ; 14(10): 1724-1731, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940610

ABSTRACT

Pre-race dosing of horses with alkalinising agents to manipulate performance has been evident in racing worldwide for over 30 years. To regulate the use of alkalinising agents, racing authorities adopted thresholds for total plasma carbon dioxide (TCO2 ) in racehorses. Traditionally, racing laboratories have measured plasma TCO2 using ion selective electrode (ISE) technology, with the Association of Official Racing Chemists (AORC) approving the use of only three ISE instruments for measurement. Because of the manufacture and support of these instruments ceasing, racing laboratories have explored alternative techniques to measure plasma TCO2 . In this study, headspace gas chromatography mass spectrometry (HSGCMS) with fully automated sample preparation was investigated as an alternative technique to ISE. Sample preparation was carried out online on a Gerstel robot, where plasma was aspirated directly from sealed vacutainer tubes before further treatment and headspace injection into a GCMS. The method was successfully cross validated against a Beckman Unicel DxC®600, meeting all criteria stipulated in the AORC cross-validation protocol. The method achieved an accuracy of 99.8%, within-run relative standard deviation of 0.22% and interday reproducibility of 0.04 mM, all significant improvements on the authors ISE method. A population study was also conducted to ensure the plasma TCO2 threshold, established with ISE methodology, did not change with the developed HSGCMS method. The concentrations and standard deviations for the two methods were almost identical, HSGCMS mean 30.62 mM, standard deviation 1.65 mM, and ISE 30.65 and 1.55 mM. The results indicate that the fully automated HSGCMS method is suitable for measurement of equine plasma TCO2 for regulatory purposes.


Subject(s)
Carbon Dioxide , Plasma , Animals , Gas Chromatography-Mass Spectrometry , Horses , Reproducibility of Results
6.
Drug Test Anal ; 13(10): 1749-1757, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34254454

ABSTRACT

Samples of the 'dietary supplement' Furazadrol sourced through the internet have been reported to contain the designer anabolic androgenic steroids [1',2']isoxazolo[4',5':2,3]-5α-androstan-17ß-ol (furazadrol F) and [1',2']isoxazolo[4',3':2,3]-5α-androstan-17ß-ol (isofurazadrol IF). These steroids contain an isoxazole fused to the A-ring and were designed to offer anabolic activity while evading detection, raising concerns over the potential for abuse of this preparation in sports. The metabolism of Furazadrol (F:IF, 10:1) was studied by in vivo methods in greyhounds. Urinary phase II Furazadrol metabolites were detected as glucuronides after a controlled administration. These phase II metabolites were subjected to enzymatic hydrolysis by Escherichia coli ß-glucuronidase to afford the corresponding phase I metabolites. Using a library of synthetically derived reference materials, the identities of seven urinary Furazadrol metabolites were confirmed. Major confirmed metabolites were isofurazadrol IF, 4α-hydroxyfurazadrol 4α-HF and 16α-hydroxy oxidised furazadrol 16α-HOF, whereas the minor confirmed metabolites were furazadrol F, 4ß-hydroxyfurazadrol 4ß-HF, 16ß-hydroxyfurazadrol 16ß-HF and 16ß-hydroxy oxidised furazadrol 16ß-HOF. One major hydroxyfurazadrol and two dihydroxyfurazadrol metabolites remained unidentified. Qualitative excretion profiles, limits of detection and extraction recoveries were established for furazadrol F and major confirmed metabolites. These investigations identify the key urinary metabolites of Furazadrol following oral administration, which can be incorporated into routine screening by anti-doping laboratories to aid the regulation of greyhound racing.


Subject(s)
Anabolic Agents/metabolism , Androstanes/metabolism , Doping in Sports/prevention & control , Anabolic Agents/urine , Androstanes/urine , Animals , Dogs , Female , Limit of Detection , Male , Substance Abuse Detection/methods , Substance Abuse Detection/veterinary
7.
J Vet Pharmacol Ther ; 44(5): 689-695, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33729577

ABSTRACT

Dexamethasone, formulated as sodium phosphate and as phenylpropionate combined with sodium phosphate, was administered subcutaneously to six greyhounds. Plasma and urine were collected for up to 240 h and analysed with a limit of quantification (LOQ) of at least 100 pg/ml for dexamethasone. Dexamethasone, formulated as sodium phosphate, terminal half-life was 10.4 h in plasma and approximately 16 h in urine, and at 96 h, plasma hydrocortisone concentrations returned to background with dexamethasone levels around the LOQ. Dexamethasone, formulated as phenylpropionate combined with sodium phosphate, terminal half-life, was 25.6 h in plasma and approximately 26 h in urine, and at 96 h, plasma hydrocortisone concentrations returned to background with dexamethasone levels in three of the six greyhounds around the LOQ. Critical assessment of the pharmacokinetic and pharmacodynamic data indicated how it might be utilized for medication control in racing greyhounds.


Subject(s)
Dexamethasone , Animals , Area Under Curve , Dogs
8.
J Vet Pharmacol Ther ; 42(5): 505-510, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31090076

ABSTRACT

Medication control in greyhound racing requires information from administration studies that measure drug levels in the urine as well as plasma, with time points that extend into the terminal phase of excretion. To characterize the plasma and the urinary pharmacokinetics of flunixin and enable regulatory advice for greyhound racing in respect of both medication and residue control limits, flunixin meglumine was administered intravenously on one occasion to six different greyhounds at the label dose of 1 mg/kg and the levels of flunixin were measured in plasma for up to 96 hr and in urine for up to 120 hr. Using the standard methodology for medication control, the irrelevant plasma concentration was determined as 1 ng/ml and the irrelevant urine concentration was determined as 30 ng/ml. This information can be used by regulators to determine a screening limit, detection time and a residue limit. The greyhounds with the highest average urine pH had far greater flunixin exposure compared with the greyhounds that had the lowest. This is entirely consistent with the extent of ionization predicted by the Henderson-Hasselbalch equation. This variability in the urine pharmacokinetics reduces with time, and at 72 hr postadministration, in the terminal phase, the variability in urine and plasma flunixin concentrations are similar and should not affect medication control.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Clonixin/analogs & derivatives , Dogs/blood , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/blood , Anti-Inflammatory Agents, Non-Steroidal/urine , Area Under Curve , Clonixin/blood , Clonixin/chemistry , Clonixin/metabolism , Clonixin/pharmacokinetics , Clonixin/urine , Dogs/urine , Drug Residues , Female , Half-Life , Hydrogen-Ion Concentration , Infusions, Intravenous , Male , Sports , Urine/chemistry
9.
Drug Test Anal ; 10(3): 460-473, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28658524

ABSTRACT

The doping of greyhound dogs with testosterone is done in an attempt to improve their athletic performance, but such doping cannot easily be confirmed, especially in male dogs owing to the natural presence of endogenous testosterone. As testosterone is usually administered as its esters, their direct detection in hair would provide confirmatory evidence of the administration of a pharmaceutical product. This article demonstrates that the use of a liquid chromatography-high resolution mass spectrometry method with heated electrospray ionisation (HESI) combined with the use of amino solid-phase extraction (SPE) cartridges for sample clean-up, is suitable for the sensitive determination of propionate, phenyl propionate, isocaproate, decanoate, and enanthate esters of testosterone in greyhound hair. The method is linear over the range, 0.1 µg/kg-10 µg/kg, for all the testosterone esters analysed. The limits of detection (LOD) are 0.05 µg/kg for testosterone phenyl propionate, isocaproate, and decanoate, 0.025 µg/kg for testosterone propionate, and 0.25 µg/kg for testosterone enanthate. This method was applied to hair samples collected from male greyhounds before and after a single administration of a product containing several testosterone esters, each of which could be detected up to 100 days post-administration. The study also demonstrates that tail hair is the specimen of choice for the analysis of testosterone in dog hair and that washing of dogs does not impact the analysis of testosterone esters in hair. This method may be useful in racing regulation for the detection of illegitimate use of testosterone in all species.


Subject(s)
Anabolic Agents/analysis , Animal Fur/chemistry , Dogs , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods , Testosterone/analysis , Androgens/analysis , Animals , Chromatography, Liquid/methods , Dogs/metabolism , Doping in Sports , Esterification , Esters/analysis , Limit of Detection , Male , Solid Phase Extraction/methods
10.
Drug Test Anal ; 9(9): 1400-1406, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28320080

ABSTRACT

Cobalt is an essential mineral micronutrient and is regularly present in equine nutritional and feed supplements. Therefore, cobalt is naturally present at low concentrations in biological samples. The administration of cobalt chloride is considered to be blood doping and is thus prohibited. To control the misuse of cobalt, it was mandatory to establish an international threshold for cobalt in plasma and/or in urine. To achieve this goal, an international collaboration, consisting of an interlaboratory comparison between 5 laboratories for the urine study and 8 laboratories for the plasma study, has been undertaken. Quantification of cobalt in the biological samples was performed by inductively coupled plasma-mass spectrometry (ICP-MS). Ring tests were based on the analysis of 5 urine samples supplemented at concentrations ranging from 5 up to 500 ng/mL and 5 plasma samples spiked at concentrations ranging from 0.5 up to 25 ng/mL. The results obtained from the different laboratories were collected, compiled, and compared to assess the reproducibility and robustness of cobalt quantification measurements. The statistical approach for the ring test for total cobalt in urine was based on the determination of percentage deviations from the calculated means, while robust statistics based on the calculated median were applied to the ring test for total cobalt in plasma. The inter-laboratory comparisons in urine and in plasma were successful so that 97.6% of the urine samples and 97.5% of the plasma samples gave satisfactory results. Threshold values for cobalt in plasma and urine were established from data only obtained by laboratories involved in the ring test. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Body Fluids/chemistry , Cobalt/analysis , Cobalt/urine , Dietary Supplements/analysis , Mass Spectrometry/methods , Plasma/chemistry , Animals , Cobalt/chemistry , Horses , Reproducibility of Results
11.
Clin Chem ; 58(10): 1476-84, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22912397

ABSTRACT

BACKGROUND: Resolvins and protectins are families of local lipid mediators generated from the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during self-limited resolution of inflammation. We aimed to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to measure these lipid mediators in human blood following n-3 fatty acid supplementation and to determine whether the blood collection method affects their measured concentration. METHODS: Blood samples from 20 healthy volunteers enrolled in an n-3 fatty acid supplementation trial were collected in EDTA, heparin, or citrate, or prepared as serum after volunteers had undergone 3 weeks of supplementation. Plasma or serum was purified by solid-phase chromatography and analyzed with LC-MS/MS. RESULTS: The assay identified 18R/S-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid (18R/S-HEPE); 17S-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17R/S-HDHA); 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (RvD1); 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoicacid (17R-RvD1); 7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid (RvD2); 10S,17S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoicacid (10S,17S-DiHDHA); and 10R,17S-dihydroxy-4Z,7Z,11E,13E,15Z,19Z-docosahexaenoic acid (protectin D1, PD1). The limits of detection and quantification were 3 pg and 6 pg on-column, respectively. The pathway precursors 18R/S-HEPE and 17R/S-HDHA, but not the resolvins, were lower in serum compared with plasma. After n-3 fatty acid supplementation, mean (SD) EDTA plasma concentrations were: 18R/S-HEPE 386 (56) pg/mL, 17R/S-HDHA 365 (65) pg/mL, RvD2 26 (4) pg/mL, RvD1 31 (5) pg/mL, and 17R-RvD 161 (7) pg/mL. 10S,17S-DiHDHA and PD1 concentrations were below the limit of quantification. CONCLUSIONS: This is the first study reporting 17R/S-HDHA, RvD1, and RvD2 concentrations measured in human blood following oral n-3 fatty acid supplementation. The concentrations of the antiinflammatory lipid mediators RvD1 and RvD2 were within the biological range known to have antiinflammatory and proresolving activities in isolated human leukocytes and in in vivo studies in mice.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Inflammation/blood , Aged , Chromatography, Liquid , Dietary Supplements , Docosahexaenoic Acids/chemistry , Eicosapentaenoic Acid/chemistry , Female , Humans , Male , Middle Aged , Stereoisomerism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...