Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 31(4): 1055-1063, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33956267

ABSTRACT

Employing natural or artificial sunscreens is essential to protect the skin from ultraviolet radiations that cause premature aging and develop melanoma and other forms of skin cancer. The 2-Phenylbenzimidazole-5-sulfonic acid, commonly known as ensulizole is a water-soluble artificial sunscreen that absorb UV-B (280 nm - 315 nm) radiations and protects the skin against the harmful effects of these radiations. We have measured steady-state photoluminescence (SSPL) spectra and photoluminescence (PL) kinetics of this compound in various conditions. Steady-state absorption indicates a strong absorption feature at 303 nm and a weak one at 316 nm that have been identified as π → π* and n → π* transitions, respectively. The spectra of PL induced by these absorptions indicate that the PL of ensulizole is less Stokes-shifted in polar solvents and more Stokes-shifted in non-polar solvents. The average PL lifetime of ensulizole is longer in non-polar solvents than in polar solvents and it exhibits the shortest PL lifetime in aqueous medium that maximize its transition efficiency in water. This suggests in non-polar solvents intersystem crossing is the dominant mode of relaxation of the excited ππ* state. Furthermore, an increase of pH of ensulizole solution decreases the PL intensity and the lifetime. Stern-Volmer equation is employed to evaluate bimolecular quenching rate constant kq. The evaluation result suggests the diffusional dynamic mode of PL quenching is operative.


Subject(s)
Benzimidazoles , Sulfonic Acids , Kinetics , Sunscreening Agents , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...