Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212949

ABSTRACT

Nowadays, autonomous vehicles have achieved a lot of research interest regarding the navigation, the surrounding environmental perception, and control. Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) is one of the significant components of any vehicle navigation system. However, GNSS has limitations in some operating scenarios such as urban regions and indoor environments where the GNSS signal suffers from multipath or outage. On the other hand, INS standalone navigation solution degrades over time due to the INS errors. Therefore, a modern vehicle navigation system depends on integration between different sensors to aid INS for mitigating its drift during GNSS signal outage. However, there are some challenges for the aiding sensors related to their high price, high computational costs, and environmental and weather effects. This paper proposes an integrated aiding navigation system for vehicles in an indoor environment (e.g., underground parking). This proposed system is based on optical flow and multiple mass flow sensors integrations to aid the low-cost INS by providing the navigation extended Kalman filter (EKF) with forward velocity and change of heading updates to enhance the vehicle navigation. The optical flow is computed for frames taken using a consumer portable device (CPD) camera mounted in the upward-looking direction to avoid moving objects in front of the camera and to exploit the typical features of the underground parking or tunnels such as ducts and pipes. On the other hand, the multiple mass flow sensors measurements are modeled to provide forward velocity information. Moreover, a mass flow differential odometry is proposed where the vehicle change of heading is estimated from the multiple mass flow sensors measurements. This integrated aiding system can be used for unmanned aerial vehicles (UAV) and land vehicle navigations. However, the experimental results are implemented for land vehicles through the integration of CPD with mass flow sensors to aid the navigation system.

2.
Sensors (Basel) ; 18(9)2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30142948

ABSTRACT

Drones are becoming increasingly significant for vast applications, such as firefighting, and rescue. While flying in challenging environments, reliable Global Navigation Satellite System (GNSS) measurements cannot be guaranteed all the time, and the Inertial Navigation System (INS) navigation solution will deteriorate dramatically. Although different aiding sensors, such as cameras, are proposed to reduce the effect of these drift errors, the positioning accuracy by using these techniques is still affected by some challenges, such as the lack of the observed features, inconsistent matches, illumination, and environmental conditions. This paper presents an integrated navigation system for Unmanned Aerial Vehicles (UAVs) in GNSS denied environments based on a Radar Odometry (RO) and an enhanced Visual Odometry (VO) to handle such challenges since the radar is immune against these issues. The estimated forward velocities of a vehicle from both the RO and the enhanced VO are fused with the Inertial Measurement Unit (IMU), barometer, and magnetometer measurements via an Extended Kalman Filter (EKF) to enhance the navigation accuracy during GNSS signal outages. The RO and VO are integrated into one integrated system to help overcome their limitations, since the RO measurements are affected while flying over non-flat terrain. Therefore, the integration of the VO is important in such scenarios. The experimental results demonstrate the proposed system's ability to significantly enhance the 3D positioning accuracy during the GNSS signal outage.

SELECTION OF CITATIONS
SEARCH DETAIL
...