Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 159, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991339

ABSTRACT

BACKGROUND: Tomato (Solanum lycopersicum) is both an important agricultural product and an excellent model system for studying plant-pathogen interactions. It is susceptible to bacterial wilt caused by Ralstonia solanacearum (Rs), and infection can result in severe yield and quality losses. To investigate which genes are involved in the resistance response to this pathogen, we sequenced the transcriptomes of both resistant and susceptible tomato inbred lines before and after Rs inoculation. RESULTS: In total, 75.02 Gb of high-quality reads were generated from 12 RNA-seq libraries. A total of 1,312 differentially expressed genes (DEGs) were identified, including 693 up-regulated and 621 down-regulated genes. Additionally, 836 unique DEGs were obtained when comparing two tomato lines, including 27 co-expression hub genes. A total of 1,290 DEGs were functionally annotated using eight databases, most of which were found to be involved in biological pathways such as DNA and chromatin activity, plant-pathogen interaction, plant hormone signal transduction, secondary metabolite biosynthesis, and defense response. Among the core-enriched genes in 12 key pathways related to resistance, 36 genotype-specific DEGs were identified. RT-qPCR integrated analysis revealed that multiple DEGs may play a significant role in tomato response to Rs. In particular, Solyc01g073985.1 (NLR disease resistance protein) and Solyc04g058170.1 (calcium-binding protein) in plant-pathogen interaction are likely to be involved in the resistance. CONCLUSION: We analyzed the transcriptomes of both resistant and susceptible tomato lines during control and inoculated conditions and identified several key genotype-specific hub genes involved in a variety of different biological processes. These findings lay a foundation for better understanding the molecular basis by which resistant tomato lines respond to Rs.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/genetics , Gene Expression Profiling , Ralstonia solanacearum/genetics , Transcriptome , Genotype , Plant Diseases/genetics , Plant Diseases/microbiology
2.
Front Plant Sci ; 11: 579772, 2020.
Article in English | MEDLINE | ID: mdl-33193523

ABSTRACT

Plants intensely modulate respiration when pathogens attack, but the function of mitochondrial respiration-related genes in plant-bacteria interaction is largely unclear. Here, the functions of α-ketoglutarate dehydrogenase (α-kGDH) E2 subunit and alternative oxidase (AOX) were investigated in the interaction between tomato and the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). Pst inoculation suppressed the transcript abundance of α-kGDH E2, but enhanced AOX expression and salicylic acid (SA) accumulation. Gene silencing and transient overexpression approaches revealed that plant susceptibility to Pst was significantly reduced by silencing α-kGDH E2 in tomato, but increased by overexpressing α-kGDH E2 in Nicotiana benthamiana, whereas silencing or overexpressing of AOX1a did not affect plant defense. Moreover, silencing octanoyltransferase (LIP2), engaged in the lipoylation of α-kGDH E2, significantly reduced disease susceptibility and hydrogen peroxide accumulation. Use of transgenic NahG tomato plants that cannot accumulate SA as well as the exogenous SA application experiment evidenced that α-kGDH E2 acts downstream of SA defense pathway. These results demonstrate tomato α-kGDH E2 plays a negative role in plant basal defense against Pst in an AOX-independent pathway but was associated with lipoylation and SA defense pathways. The findings help to elucidate the mechanisms of mitochondria-involved plant basal immunity.

3.
Genes (Basel) ; 11(5)2020 04 29.
Article in English | MEDLINE | ID: mdl-32365643

ABSTRACT

As a broad-spectrum disease resistance factor, MLO is involved in a variety of biotic and abiotic stress responses in plants. To figure out the structural features, phylogenetic relationships, and expression patterns of MLO genes, we investigated the genome and transcriptome sequencing data of 28 plant species using bioinformatics tools. A total of 197 MLO genes were identified. They possessed 5-7 transmembrane domains, but only partially contained a calmodulin-binding domain. A total of 359 polymorphic sites and 142 haplotypes were found in 143 sequences, indicating the rich nucleotide diversity of MLO genes. The MLO genes were unevenly distributed on chromosomes or scaffolds and were mainly located at the ends, forming clusters (24.1% genes), tandem duplicates (5.7%), and segment duplicates (36.2%). The MLO genes could be classified into three groups by phylogenetic analysis. The angiosperm genes were mainly in subgroup IA, Selaginella moellendorffii genes were in subgroup IA and IIIB, Physcomitrella patens genes were in subgroup IB and IIIA, and almost all algae genes were in group II. About half of the MLO genes had homologs within and across species. The Ka/Ks values were all less than 1, varying 0.01-0.78, suggesting that purifying selection had occurred in MLO gene evolution. In tomato, RNA-seq data indicated that SlMLO genes were highly expressed in roots, followed by flowers, buds, and leaves, and also regulated by different biotic stresses. qRT-PCR analysis revealed that SlMLO genes could respond to tomato bacterial wilt, with SlMLO1, SlMLO2, SlMLO4, and SlMLO6 probably involved in the susceptibility response, whereas SlMLO14 and SlMLO16 being the opposite. These results lay a foundation for the isolation and application of related genes in plant disease resistance breeding.


Subject(s)
Calmodulin-Binding Proteins/genetics , Disease Resistance/genetics , Ralstonia solanacearum/genetics , Solanum lycopersicum/genetics , Transcription, Genetic/genetics , Arabidopsis Proteins/genetics , Genome, Plant/genetics , Solanum lycopersicum/microbiology , Magnoliopsida/genetics , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Ralstonia solanacearum/pathogenicity , Stress, Physiological/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...