Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e2039, 2024.
Article in English | MEDLINE | ID: mdl-38983232

ABSTRACT

As more aerial imagery becomes readily available, massive volumes of data are being gathered constantly. Several groups can benefit from the data provided by this geographical imagery. However, it is time-consuming to manually analyze each image to gain information on land cover. This research suggests using deep learning methods for precise and rapid pixel-by-pixel classification of aerial imagery for land cover analysis, which would be a significant step forward in resolving this issue. The suggested method has several steps, such as the augmentation and transformation of data, the selection of deep learning models, and the final prediction. The study uses the three most popular deep learning models (Vanilla-UNet, ResNet50 UNet, and DeepLabV3 ResNet50) for the experiments. According to the experimental results, the ResNet50 UNet model achieved an accuracy of 94.37%, the DeepLabV3 ResNet50 model achieved an accuracy of 94.77%, and the Vanilla-UNet model achieved an accuracy of 91.31%. The accuracy, precision, recall, and F1-score of DeepLabV3 and ResNet50 are higher than those of the other two models. The proposed approach is also compared to the existing UNet approach, and the proposed approaches have produced greater probability prediction scores than the conventional UNet model for all classes. Our approach outperforms model DeepLabV3 ResNet50 on aerial image datasets based on the performance.

2.
Sci Rep ; 14(1): 3123, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326488

ABSTRACT

As cardiovascular disorders are prevalent, there is a growing demand for reliable and precise diagnostic methods within this domain. Audio signal-based heart disease detection is a promising area of research that leverages sound signals generated by the heart to identify and diagnose cardiovascular disorders. Machine learning (ML) and deep learning (DL) techniques are pivotal in classifying and identifying heart disease from audio signals. This study investigates ML and DL techniques to detect heart disease by analyzing noisy sound signals. This study employed two subsets of datasets from the PASCAL CHALLENGE having real heart audios. The research process and visually depict signals using spectrograms and Mel-Frequency Cepstral Coefficients (MFCCs). We employ data augmentation to improve the model's performance by introducing synthetic noise to the heart sound signals. In addition, a feature ensembler is developed to integrate various audio feature extraction techniques. Several machine learning and deep learning classifiers are utilized for heart disease detection. Among the numerous models studied and previous study findings, the multilayer perceptron model performed best, with an accuracy rate of 95.65%. This study demonstrates the potential of this methodology in accurately detecting heart disease from sound signals. These findings present promising opportunities for enhancing medical diagnosis and patient care.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Heart Sounds , Humans , Artificial Intelligence , Neural Networks, Computer , Heart Diseases/diagnosis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...