Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302664, 2024.
Article in English | MEDLINE | ID: mdl-38820359

ABSTRACT

The ever-increasing demand for electricity has presented a grave threat to traditional energy sources, which are finite, rapidly depleting, and have a detrimental environmental impact. These shortcomings of conventional energy resources have caused the globe to switch from traditional to renewable energy sources. Wind power significantly contributes to carbon-free energy because it is widely accessible, inexpensive, and produces no harmful emissions. Better and more efficient renewable wind power production relies on accurate wind speed predictions. Accurate short-term wind speed forecasting is essential for effectively handling unsteady wind power generation and ensuring that wind turbines operate safely. The significant stochastic nature of the wind speed and its dynamic unpredictability makes it difficult to forecast. This paper develops a hybrid model, L-LG-S, for precise short-term wind speed forecasting to address problems in wind speed forecasting. In this research, state-of-the-art machine learning and deep learning algorithms employed in wind speed forecasting are compared with the proposed approach. The effectiveness of the proposed hybrid model is tested using real-world wind speed data from a wind turbine located in the city of Karachi, Pakistan. Moreover, the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are used as accuracy evaluation indices. Experimental results show that the proposed model outperforms the state-of-the-art legacy models in terms of accuracy for short-term wind speed in training, validation and test predictions by 98% respectively.


Subject(s)
Forecasting , Wind , Forecasting/methods , Models, Theoretical , Renewable Energy , Algorithms , Machine Learning
2.
Epilepsy Behav ; 155: 109732, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636140

ABSTRACT

Epilepsy affects over 50 million people globally. Electroencephalography is critical for epilepsy diagnosis, but manual seizure classification is time-consuming and requires extensive expertise. This paper presents an automated multi-class seizure classification model using EEG signals from the Temple University Hospital Seizure Corpus ver. 1.5.2. 11 features including time-based correlation, time-based eigenvalues, power spectral density, frequency-based correlation, frequency-based eigenvalues, sample entropy, spectral entropy, logarithmic sum, standard deviation, absolute mean, and ratio of Daubechies D4 wavelet transformed coefficients were extracted from 10-second sliding windows across channels. The model combines multi-head self-attention mechanism with a deep convolutional neural network (CNN) to classify seven subtypes of generalized and focal epileptic seizures. The model achieved 0.921 weighted accuracy and 0.902 weighted F1 score in classifying focal onset non-motor, generalized onset non-motor, simple partial, complex partial, absence, tonic, and tonic-clonic seizures. In comparison, a CNN model without multi-head attention achieved 0.767 weighted accuracy. Ablation studies were conducted to validate the importance of transformer encoders and attention. The promising classification results demonstrate the potential of deep learning for handling EEG complexity and improving epilepsy diagnosis. This seizure classification model could enable timely interventions when translated into clinical practice.


Subject(s)
Electroencephalography , Epilepsies, Partial , Neural Networks, Computer , Seizures , Humans , Electroencephalography/methods , Seizures/classification , Seizures/diagnosis , Seizures/physiopathology , Epilepsies, Partial/classification , Epilepsies, Partial/diagnosis , Epilepsies, Partial/physiopathology , Deep Learning , Attention/physiology , Male , Adult , Female , Epilepsy, Generalized/classification , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/physiopathology , Young Adult
3.
Neurol Res ; 41(2): 99-109, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30332347

ABSTRACT

OBJECTIVE: Epilepsy is a neurological disorder affecting 50 million individuals globally. Modern research has inspected the likelihood of forecasting epileptic seizures. Algorithmic investigations are giving promising results for seizure prediction. Though mostly seizure prediction algorithm uses pre-ictal (prodromal symptoms) events for prediction. On the contrary, prodromal symptoms may not necessarily be present in every patient or subject. This paper focuses on seizure forecasting regardless of the presence of pre-ictal (prodromal symptoms) using the single robust feature with maximum accuracy. Method: We evaluated datasets having 4-aminopydine induced seizure-like events rat's hippocampa slices and cortical tissue from pharmacoresistant epilepsy patients. The proposed methodology applies the Discrete Wavelet Transform (DWT) at levels 1-5 utilizing 'Daubechies-4'. Linear Discriminant classifier (LDC), Quadratic Discriminant Classifier (QDC) and Support Vector Machine (SVM) were used to classify each signal using eight discriminative features. Results: Classifier performance was assessed by parameters like true detections (TD), false detection (FD), accuracy (ACC), sensitivity (SEN), specificity (SPF), and positive predicted value (PPC), negative predicted value (NPV). Highest classification feature was selected as a seizure forecasting correlation vector and decision rule was formulated for seizure forecasting. Correlation vector served as a forecaster for current EEG activity. Proposed decision rule forecasted ongoing signal activity towards possible seizure condition true or false. The suggested framework revealed forecasting of ictal events at 10 seconds before the actual seizure. Conclusion: It is worth mentioning that the proposed study utilized a single linear feature to predict seizures precisely. Moreover, utilization of single feature encouraged in subsiding system complexity, processing delays, and system latency.


Subject(s)
Electroencephalography/methods , Epilepsy/physiopathology , Seizures/physiopathology , Support Vector Machine , Animals , Cerebral Cortex/physiopathology , Disease Models, Animal , Drug Resistant Epilepsy/physiopathology , Epilepsy/diagnosis , Forecasting , Humans , Rats , Seizures/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...