Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 7211, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076573

ABSTRACT

The role of 3'-end stem-loops in retrotransposition was experimentally demonstrated for transposons of various species, where LINE-SINE retrotransposons share the same 3'-end sequences, containing a stem-loop. We have discovered that 62-68% of processed pseduogenes and mRNAs also have 3'-end stem-loops. We investigated the properties of 3'-end stem-loops of human L1s, Alus, processed pseudogenes and mRNAs that do not share the same sequences, but all have 3'-end stem-loops. We have built sequence-based and structure-based machine-learning models that are able to recognize 3'-end L1, Alu, processed pseudogene and mRNA stem-loops with high performance. The sequence-based models use only sequence information and capture compositional bias in 3'-ends. The structure-based models consider physical, chemical and geometrical properties of dinucleotides composing a stem and position-specific nucleotide content of a loop and a bulge. The most important parameters include shift, tilt, rise, and hydrophilicity. The obtained results clearly point to the existence of structural constrains for 3'-end stem-loops of L1 and Alu, which are probably important for transposition, and reveal the potential of mRNAs to be recognized by the L1 machinery. The proposed approach is applicable to a broader task of recognizing RNA (DNA) secondary structures. The constructed models are freely available at github ( https://github.com/AlexShein/transposons/ ).


Subject(s)
Alu Elements/genetics , Genome, Human , Long Interspersed Nucleotide Elements/genetics , Machine Learning , Pseudogenes/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , Area Under Curve , Humans , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...