Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080034

ABSTRACT

An optical sensor-based localized surface plasmon resonance (LSPR) sensor was demonstrated for sensitive and selective chlorophyll detection through the integration of amino-functionalized carbon quantum dots (NCQD) and triangle silver nanoparticles (AgNPs). The additions of amino groups to the CQD enhance the detection of chlorophyll through electrostatic interactions. AgNPs-NCQD composite was fabricated on the surface of the silanized glass slide using the self-assembly technique. The experimental results showed that the AgNPs-NCQD film-based LSPR sensor detects better than AgNPs and AgNPs-CQD films with a good correlation coefficient (R2 = 0.9835). AgNPs-NCQD showed a high sensitivity response of 2.23 nm ppm-1. The detection and quantification limits of AgNPs-NCQD are 1.03 ppm and 3.40 ppm, respectively, in the range of 0.05 to 6 ppm. Throughout this study, no significant interference was observed among the other ionic species (NO2-, PO4-, NH4+, and Fe3+). This study demonstrates the applicability of the proposed sensor (AgNPs-NCQD) as a sensing material for chlorophyll detection in oceans.

2.
Sci Rep ; 11(1): 23519, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876656

ABSTRACT

The resistive switching (RS) mechanism is resulted from the formation and dissolution of a conductive filament due to the electrochemical redox-reactions and can be identified with a pinched hysteresis loop on the I-V characteristic curve. In this work, the RS behaviour was demonstrated using a screen-printed electrode (SPE) and was utilized for creatinine sensing application. The working electrode (WE) of the SPE has been modified with a novel small organic molecule, 1,4-bis[2-(5-thiophene-2-yl)-1-benzothiopene]-2,5-dioctyloxybenzene (BOBzBT2). Its stability at room temperature and the presence of thiophene monomers were exploited to facilitate the cation transport and thus, affecting the high resistive state (HRS) and low resistive state (LRS) of the electrochemical cell. The sensor works based on the interference imposed by the interaction between the creatinine molecule and the radical cation of BOBzBT2 to the conductive filament during the Cyclic Voltammetry (CV) measurement. Different concentrations of BOBzBT2 dilution were evaluated using various concentrations of non-clinical creatinine samples to identify the optimised setup of the sensor. Enhanced sensitivity of the sensor was observed at a high concentration of BOBzBT2 over creatinine concentration between 0.4 and 1.6 mg dL-1-corresponding to the normal range of a healthy individual.

3.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009983

ABSTRACT

This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH2, OH, and COOH functional groups. The appearance of C=O and NH2 at 399.5 eV and 529.6 eV in XPS analysis indicates that functional groups are available for adsorption sites for chlorophyll interaction. A AgNP-CQD composite was coated on the glass slide surface using (3-aminopropyl) triethoxysilane (APTES) as a coupling agent and acted as the active sensing layer for chlorophyll detection. In LSPR sensing, the linear response detection for AgNP-CQD demonstrates R2 = 0.9581 and a sensitivity of 0.80 nm ppm-1, with a detection limit of 4.71 ppm ranging from 0.2 to 10.0 ppm. Meanwhile, a AgNP shows a linear response of R2 = 0.1541 and a sensitivity of 0.25 nm ppm-1, with the detection limit of 52.76 ppm upon exposure to chlorophyll. Based on these results, the AgNP-CQD composite shows a better linearity response and a higher sensitivity than bare AgNPs when exposed to chlorophyll, highlighting the potential of AgNP-CQD as a sensing material in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...